Anti-α-glucosidase and antiglycation activities of galls from Guiera senegalensis J.F. Gmel (combretaceae)


  • Pierre Alexandre Eric Djifaby SOMBIE Institute of Environment and Agricultural Research, 01 BP 476 Ouagadougou 01
  • Rahman M HAFIZUR International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
  • Moussa COMPAORÉ Laboratory of Biochemistry and Chemistry Applied (LABIOCA), University of Ouaga I Professor Joseph Ki-Zerbo, Ouagadougou, 03 BP 7021 Ouagadougou 03
  • Martin KIENDREBEOGO Laboratory of Biochemistry and Chemistry Applied (LABIOCA), University of Ouaga I Professor Joseph Ki-Zerbo, Ouagadougou, 03 BP 7021 Ouagadougou 03
  • Muhammad Iqbal CHOUDHARY Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
  • Odile Germaine NACOULMA Laboratory of Biochemistry and Chemistry Applied (LABIOCA), University of Ouaga I Professor Joseph Ki-Zerbo, Ouagadougou 03 BP 7021 Ouagadougou 03 Burkina Faso


Guiera senegalensis, Galls, α-Glucosidase, Antiglycation, α-chymotrypsin


The hypoglycemic activity of Guiera senegalensis used in Burkinabe folk medicine has been already reported. The aim of this study was to investigate the in vitro antidiabetic activity from galls of G.senegalensis. The extracts and methanol fractions from galls of G. senegalensis showed strong α-glucosidase inhibitory activity compared with acarbose. The ethyl acetate fraction from methanol extract (EA/ME) showed potent antiglycation activity in an in vitro assay system. The galls did not show inhibition activity against α-chymotrypsin. The α-glucosidase inhibitory activity along with its antiglycation activity may open a new perspective for the use of G. senegalensis for the diabetic subject. The data suggests that consumption of G senegalensis galls as an infusion or in food and pharmaceutical preparations may be useful for the management of diabetes and its complications.


George C, Lochner A, Huisamen B. The efficacy of Prosopis glandulosa as antidiabetic treatment in rat models of diabetes and insulin resistance. J. Ethnopharmacol. 2011; 137: 298–304. [2] Sabiu S, O’Neill F.H, Ashafa AOT. Kinetics of α-amylase and α-glucosidase inhibitory potential of Zea mays Linnaeus (Poaceae), Stigma maydis aqueous extract: An in vitro assessment. J. Ethnopharmacol. 2016. [3] Proença C, Freitas M, Ribeiro D, Oliveira EFT, Sousa JLC, Tomé SM, Ramos MJ, Silva AMS, Fernandes PA, Fernandes E. α -Glucosidase inhibition by flavonoids : an in vitro and in silico structure – activity relationship study. J. Enzyme Inhib. Med. Chem.2017; 32 (1): 1216–1228. Doi: 10.1080/14756366.2017.1368503 [4] Yin Z, Zhang W, Feng F, Zhang Y, Kang W. α -Glucosidase inhibitors isolated from medicinal plants. Food Sci. Hum. Wellness. 2014; 3: 136–174. [5] Jo S-H, Cho C-Y, Lee J-Y, Ha K-S, Kwon Y-I, Apostolidis E. In vitro and in vivo reduction of post-prandial blood glucose levels by ethyl alcohol and water Zingiber mioga extracts through the inhibition of carbohydrate hydrolyzing enzymes. BMC Complement. Altern. Med. 2016; 16 (111). doi:10.1186/s12906-016-1090-4. [6] Lin L, Dong Y, Zhao H, Wen L, Yang B, Zhao M. Comparative evaluation of rosmarinic acid, methyl rosmarinate and pedalitin isolated from Rabdosia serra (MAXIM.) HARA as inhibitors of tyrosinase and α-glucosidase. Food Chem. 2011; 129: 884–889. [7] Behl T, Kaur I, Kotwani A. Implication of oxidative stress in progression of diabetic retinopathy. Surv. Ophthalmol. 2016; 61: 187–196. doi: [8] Ademiluyi AO and Oboh G. Soybean phenolic rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro. Exp. Toxicol. Pathol. 2013; 65: 305–309. [9] Wang SY, Camp MJ, Ehlenfeldt MK. Antioxidant capacity and α-glucosidase inhibitory activity in peel and flesh of blueberry (Vaccinium spp.) cultivars. Food Chem. 2012; 132 : 1759–1768. [10] Sombie PAED, Hilou A, Mounier C, Coulibaly AY, Kiendrebeogo M, Millogo JF, Nacoulma O.G. Antioxidant and anti-inflammatory activities from galls of Guiera senegalensis J.F. Gmel (Combretaceae). Research Journal of Medicinal Plant. 2011; 5: 448–461. DOI: 10.3923/rjmp.2011.448.461 [11] Bouchet N, Levesque J, Blond A, Bodo B, Pousset J-L. 1,3-di-O-galloylquinic acid from Guiera senegalensis. Phytochemistry. 1996; 42: 189–190. [12] Elrahman AOF, Abuelgasim AI, Galal M. Toxicopathological effects of Guiera senegalensis extracts in wistar albino rats. Journal of Medicinal Plants Research .2008; 2 (1) : 001–004 [13] Kankara SS, Mustafa M, Ibrahim HM, Nulit R, Go R. Effect of drying methods , solid-solvent ratio , extraction time and extraction temperature on phenolic antioxidants and antioxidant activity of Guiera senegalensis J.F.Gmel ( Combretaceae ) Leaves Water Extract. American Journal of Phytomedicine and Clinical Therapeutics. 2014; 12: 1378-1392 [14] Choudhary MI, Shah SAA, Rahman A, Khan S-N, Khan MTH. Alpha-glucosidase and tyrosinase inhibitors from fungal hydroxylation of tibolone and hydroxytibolones. Steroids. 2010; 75 (12): 956–966. doi: 10.1016/j.steroids.2010.05.017 [15] Pu J, Peng G, Li L,Na H, Liu Y, Liu P. Palmitic acid acutely stimulates glucose uptake via activation of Akt and ERK1/2 in skeletal muscle cells. J. Lipid Res. 2011; 52 (7): 1319–1327. doi: 10.1194/jlr.M011254 [16] Fouotsa H, Lannang AM, Mbazoa C D, Rasheed S, Marasini B P, Ali Z, Devkota K P, Kengfack AE, Shaheen F, Choudhary M I, Sewald N. Xanthones inhibitors of α- glucosidase and glycation from Garcinia nobilis. Phytochem. Lett. 2012; 5 ( 2): 236–239. [17] Zhang H and Tsao R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci. 2016; 8: 33–42. [18] Pereira DF, Cazarolli LH, Lavado C, Mengatto V, Figueiredo MSRB, Guedes A, Pizzolatti MG, Silva FRMB. Effects of flavonoids on α-glucosidase activity: Potential targets for glucose homeostasis. Nutrition. 2011; 27: 1161–1167. doi: 10.1016/j.nut.2011.01.008. [19] Revathi P, Jeyaseelan S, Thirumalaikolundu SP, Manickavasagam S, Prabhu N. A comparative mechanism of antidiabetic role of various extracts of Bruguriera cylindrica L leaves. 2015; 4 (5): 1168–1176. [20] Leyama T, Gunawan-Puteri MDPT, Kawabata J. α-Glucosidase inhibitors from the bulb of Eleutherine americana. Food Chem. 2011; 128 (2): 308–311. doi: 10.1016/j.foodchem.2011.03.021. [21] Azuma T, Kayano S-I, Matsumura Y, Konishi Y, Tanaka Y, Kikuzaki H. Antimutagenic and α-glucosidase inhibitory effects of constituents from Kaempferia parviflora. Food Chem. 2011; 125 (2): 471–475. [22] Tabopda TK, Ngoupayo J, Awoussong PK, Mitaine-Offer AC, Ali MS, Ngadjui BT, Lacaille-Dubois M-A. Triprenylated flavonoids from Dorstenia psilurus and their α-glucosidase inhibition properties. J. Nat. Prod. 2008. 71: 2068–2072. doi: 10.1021/np800509u. [23] Rao SA, Srinivas PV, Tiwari AK, Vanka UMS, Rao RVS, Dasari KR, Rao MJ. Isolation, characterization and chemobiological quantification of α-glucosidase enzyme inhibitory and free radical scavenging constituents from Derris scandens Benth. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007; 855 (2): 166–172. [24] Lamien CE, Meda A, Mans J, Romito M, Nacoulma OG, Viljoen GJ. Inhibition of fowlpox virus by an aqueous acetone extract from galls of Guiera senegalensis J. F. Gmel (Combretaceae). J. Ethnopharmacol. 2005; 96: 249–253. [25] Ooi KL, Muhammad TST, Tan ML, Sulaiman SF. Cytotoxic, apoptotic and anti-α-glucosidase activities of 3,4-di-O-caffeoyl quinic acid, an antioxidant isolated from the polyphenolic-rich extract of Elephantopus mollis Kunth. J. Ethnopharmacol. 2011; 135 (3): 685–695. [26] Ye X-P, Song C-Q, Yuan P, Mao R-G. α-Glucosidase and α-Amylase Inhibitory Activity of Common Constituents from Traditional Chinese Medicine Used for Diabetes Mellitus. Chin. J. Nat. Med. 2010; 8 (5): 349–352. [27] Sombié PAED, Hilou A, Coulibaly AY, Tibiri A, Kiendrebeogo M, Nacoulma OG. Brain Protective and Erythrocytes Hemolysis Inhibition Potentials. J. Pharmacol. Toxicol. 2011; 6 (4): 361–370. doi: 10.3923/jpt.2011.361.370 [28] Aslan M, Orhan N, Orhan DD, Ergun F. Hypoglycemic activity and antioxidant potential of some medicinal plants traditionally used in Turkey for diabetes. J. Ethnopharmacol. 2010; 128 ( 2): 384–389. [29] Jdir H, Khemakham B, Chakroun M, Zouari S, Ali YB, Zouari N. Diplotaxis simplex suppresses postprandial hyperglycemia in mice by inhibiting key-enzymes linked to type 2 diabetes. Rev. Bras. Farmacogn. 2015; 25 (2): 152–157. [30] Hyun TK, Eom SH, Kim J-S. Molecular docking studies for discovery of plant- derived α -glucosidase inhibitors. Plant Omics Journal. 2014; 7 (3): 166–170. [31] Bi X, Soong YY, Lim SW, Henry CJ. Evaluation of antioxidant capacity of Chinese five-spice ingredients. Int. J. Food Sci. Nutr. 2015; 66 (3): 289–292. [32] Navarro M, Morales FJ. Mechanism of reactive carbonyl species trapping by hydroxytyrosol under simulated physiological conditions. Food Chem. 2015; 175: 92–99. [33] Nikmaram N, Leong SY, Koubaa M, Zhu Z, Barba FJ, Greiner R, Oey I, Roohinejad S. Effect of extrusion on the anti-nutritional factors of food products: An overview. Food Control. 2017. [34] Adeyemo SM, Onilude AA. Enzymatic Reduction of Anti-nutritional Factors in Fermenting Soybeans by Lactobacillus plantarum Isolates from Fermenting Cereals. Niger. Food J. 2013; 31 (2): 84–90.




How to Cite

Pierre Alexandre Eric Djifaby SOMBIE, Rahman M HAFIZUR, Moussa COMPAORÉ, Martin KIENDREBEOGO, Muhammad Iqbal CHOUDHARY, Odile Germaine NACOULMA. Anti-α-glucosidase and antiglycation activities of galls from Guiera senegalensis J.F. Gmel (combretaceae). ijp [Internet]. 2018 Jun. 30 [cited 2024 Jun. 23];10(2):81-6. Available from:



Original Research Articles

Most read articles by the same author(s)