Biocompatibility assessment and antiproliferative activity of Detarium microcarpum Guill. and Perr. fruit pulp extracts.
Keywords:
Antiprolifartive, Biocompatibilty, Detarium microcarpum, Fibroblast, OsteosarcomaAbstract
The consumption of tropical fruits rich in chemopreventive compounds are required to prevent cells carcinogenesis and proliferation. This study was designed to assess de biocompatibility of Detarium microcarpum fruit extract on normal fibroblasts and its antiproliferative potentiality on human osteosarcoma MG-63 cells. Primary dermal fibroblasts and human osteosarcoma MG-63 cells were treated with different concentrations of hexane, chloroform, ethyl acetate and methanol extracts of D. microcarpum fruit pulp for 24h, 48h and 72h. The biocompatibility property of extracts on the normal fibroblasts and its antiproliferative activity on the human osteosarcoma cells were evaluated by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenytetrazolium bromide (MTT) assay. The biocompatibility study of D. microcarpum fruit pulp showed that the chloroform extract has exhibited the highest cytotoxic effect on normal fibroblasts followed by the ethyl acetate extract. Hexane extract wasn’t cytotoxic at concentrations of 125 and 250 µg/mL but caused more than 80 % of cell death at a concentration of 500 µg/mL. Methanol extract didn’t show a significant cytotoxic effect. Furthermore, chloroform and ethyl acetate extracts showed the best antiproliferative activity on osteosarcoma cells. A complete cell death was observed when osteosarcoma cells were treated with ethyl acetate extract at all concentrations while chloroform extract at concentrations of 250 and 500 µg/mL caused a complete cells death. Methanol extract exhibited any antiprolifarative activity. Chloroform and ethyl acetate extract of fruits pulp of D. microcapum are potent source of anticancer phytomolecules and have potential to be a promising anti-osteosarcoma extract.
References
Chen CH, Li CJ, Tai IC, Lin XH, Hsu HK, Ho ML. The fractionated Toona sinensis leaf extract induces apoptosis of human osteosarcoma cells and inhibits tumor growth in a murine xenograft model. Integr Cancer Ther. 2017;16(3):397-405. doi:10.1177/1534735416675951 2. Li Z, Yu Y, Sun S, Qi B, Wang W, Yu A. Niclosamide inhibits the proliferation of human osteosarcoma cell lines by inducing apoptosis and cell cycle arrest. Oncol Rep. 2015;33(4):1763-1768. doi:10.3892/or.2015.3766 3. Broadhead ML, Clark JC, Myers DE, Dass CR, Choong PF. The molecular pathogenesis of osteosarcoma: A review. Sarcoma. 2011;2011:1-12. doi:10.1155/2011/959248 4. Decker S, Winkelmann W, Nies B, Van Valen F. Cytotoxic effect of methotrexate and its solvent on osteosarcoma cells in vitro. J Bone Jt Surg - Ser B. 1999;81(3):545-551. doi:10.1302/0301-620X.81B3.9167 5. Balan V, Dodi G, Tudorachi N, et al. Doxorubicin-loaded magnetic nanocapsules based on N-palmitoyl chitosan and magnetite: Synthesis and characterization. Chem Eng J. 2015;279:188-197. doi:10.1016/j.cej.2015.04.152 6. Dan Son K, Kim YJ. Anticancer activity of drug-loaded calcium phosphate nanocomposites against human osteosarcoma. Biomater Res. 2017;21(13):1-8. doi:10.1186/s40824-017-0099-1 7. Kubista B, Schoefl T, Mayr L, et al. Distinct activity of the bone-targeted gallium compound KP46 against osteosarcoma cells - Synergism with autophagy inhibition. J Exp Clin Cancer Res. 2017;36(52):1-13. doi:10.1186/s13046-017-0527-z 8. Mitxelena-Iribarren O, Hisey CL, Errazquin-Irigoyen M, et al. Effectiveness of nanoencapsulated methotrexate against osteosarcoma cells: in vitro cytotoxicity under dynamic conditions. Biomed Microdevices. 2017;19(35):1-10. doi:10.1007/s10544-017-0177-0 9. Abreu P, Relva A. Carbohydrates from Detarium microcarpum bark extract. Carbohydr Res. 2002;337(18):1663-1666. doi:10.1016/S0008-6215(02)00025-3 10. Akah PA, Nworu CS, Mbaoji FN. Genus Detarium : Ethnomedicinal , phytochemical and pharmacological profile. Phytopharmacology. 2012;3(2):367-375. 11. Kini F, Ouédraogo S, Pierre I. Nutritional and terapeutic properties of the fruit of Detarium microcarpum Guill . and Perr. Fruit, Veg Cereal Sci Biotechnol. 2010;4(1):26-30. 12. Oibiokpa FI, Adoga GI, Abubakar NS, Kudirat OS. Nutritional composition of Detarium microcarpum fruit. African J Food Sci. 2014;8(6):342-350. doi:10.5897/AJFS2014.1161 13. Lamien-Meda A, Lamien EC, Compaoré MYM, et al. Polyphenol content and antioxidant activity of fourteen wild edible fruits from Burkina Faso. Molecules. 2008;13:581-594. doi:www.mdpi.org/molecules 14. Cavin AL, Hay AE, Marston A, et al. Bioactive diterpenes from the fruits of Detarium microcarpum. J Nat Prod. 2006;69(5):768-773. doi:10.1021/np058123q 15. Rouamba A, Compaoré M, Ouédraogo M, Kiendrebeogo M. Genoprotective and DNA repair activities of fruit pulp etanol extract from Detarium microcarpum Guill. and Perr. (Caesalpiniaceae). Am J Biomed Life Sci. 2018;6(4):78-84. doi:10.3390/antiox7080104 16. Tanase CE, Sartoris A, Popa MI, Verestiuc L, Unger RE, Kirkpatrick CJ. In vitro evaluation of biomimetic chitosan-calcium phosphate scaffolds with potential application in bone tissue engineering. Biomed Mater. 2013;8(2):1-10. doi:10.1088/1748-6041/8/2/025002 17. Islam MT. Diterpenes and their derivatives as potential anticancer agents. Phyther Res. 2017;31(5):691-712. doi:10.1002/ptr.5800 18. Li Y, Zhang JJ, Xu DP, et al. Bioactivities and health benefits of wild fruits. Int J Mol Sci. 2016;17(1258):1-27. doi:10.3390/ijms17081258 19. León IE, Cadavid-Vargas JF, Resasco A, et al. In vitro and in vivo antitumor effects of the VO-chrysin complex on a new three-dimensional osteosarcoma spheroids model and a xenograft tumor in mice. J Biol Inorg Chem. 2016;21(8):1009-1020. doi:10.1007/s00775-016-1397-0 20. Hsieh YS, Chu SC, Yang SF, Chen PN, Liu YC, Lu KH. Silibinin suppresses human osteosarcoma MG-63 cell invasion by inhibiting the ERK-dependent c-Jun/AP-1 induction of MMP-2. Carcinogenesis. 2007;28(5):977-987. doi:10.1093/carcin/bgl221 21. Zhang N, Ying MD, Wu YP, et al. Hyperoside, a flavonoid compound, inhibits proliferation and stimulates osteogenic differentiation of human osteosarcoma cells. PLoS One. 2014;9(7):3-10. doi:10.1371/journal.pone.0098973 22. Chang R, Sun L, Webster T. Selective inhibition of MG-63 osteosarcoma cell proliferation induced by curcumin-loaded self-assembled arginine-rich-RGD nanospheres. Int J Nanomedicine. 2015;10:3351-3365. doi:10.2147/IJN.S78756 23. Lan H, Hong W, Fan P, Qian D, Zhu J, Bai B. Quercetin Inhibits Cell Migration and Invasion in Human Osteosarcoma Cells. Cell Physiol Biochem. 2017;43(2):553-567. doi:10.1159/000480528 24. Du GY, He SW, Zhang L, Sun CX, Mi LD, Sun ZG. Hesperidin exhibits in vitro and in vivo antitumor effects in human osteosarcoma MG-63 cells and xenograft mice models via inhibition of cell migration and invasion, cell cycle arrest and induction of mitochondrial-mediated apoptosis. Oncol Lett. 2018;16(5):6299-6306. doi:10.3892/ol.2018.9439 25. Wang T, Gong X, Jiang R, Li H, Du W, Kuang G. Ferulic acid inhibits proliferation and promotes apoptosis via blockage of PI3K/Akt pathway in osteosarcoma cell. Am J Transl Res. 2016;8(2):968-980. 26. Sandra F, Sidharta MA. Caffeic acid induced apoptosis in MG63 osteosarcoma cells through activation of caspases. Mol Cell Biomed Sci. 2017;1(1):28-33. doi:10.21705/mcbs.v1i1.6
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.