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GU-MCT810 is a proprietary nutraceutical ingredient complex that 
includes a Commiphora mukul (guggul) extract prepared with and a 
supercritical CO2-co-solvent extraction with ethanol and medium 
chain triglyceride (MCT) oil composed of C8 and C10 fatty acids.   
GU-MCT810 was shown to promote hypolidemic effects in vitro as 
it reduces low-density lipoprotein cholesterol and increases the 
high-density lipoprotein/low-density lipoprotein ratio. Additionally, 
GU-MCT810 inhibits adipocyte differentiation, increases AMPK  
phosphorylation and AMPK kinase activity and inhibits 
phosphorylated form of mTOR expression [14]. It also up regulates 
the expression of LXR, PPAR , BABP and SHP genes associated 
with the lipid metabolism.  In this investigation we have studied the 
effect of GU-MCT810 on the expression of HIF-1 pathway-
associated genes in human HepG2 cell line for its use in cancer 
therapy.   

Materials and Methods 
Reagents: GU-MCT810 is manufactured by Flavex Naturextrakte 
GmbH, Rehlingen, Germany. Its extraction, preparation and quality 
details have been described in our earlier publications [15,16]. 
Other reagents like 2-Deoxyglucose (2-DG) and CoCl2 were 
purchased from Sigma Aldrich Chemical Co., St. Louis, MO.  
Cell line: Human hepatoma cell line (HepG2) was grown in EagleÊs 
minimum essential medium supplemented with 10% fetal bovine 
serum, 100 U/ml of streptomycin and100 øg/ml of penicillin in a 5% 
CO2 humidified incubator maintained at 37 C.  
Cytotoxicity assay: HepG2 cells were treated with increasing 
concentrations of GU-MCT810, 2-DG and their combination at 
37 C for 72 h in a CO2 incubator. The cytotoxicity of HepG2 cells 
against single agent as well as the combination with 2-DG was 
analyzed by MTT assay using the Cell proliferation kit I from Roche 
Biochemicals, IN [17]. 

Synergy analysis with 2-deoxyglucose 

To determine the synergistic/additive/antagonistic effect between 
and GU-MCT810 and 2-DG, cytotoxicity data were analyzed further 
using CompuSyn software (ComboSyn, Inc. Paramus, NJ). The 
program is based on Chou and TalalayÊs [18] multiple drug effect 
equations and it defines synergism as   more-than-expected 
additive effect and antagonism as a less-than-expected additive 
effect [18,19]. The combination index was calculated by the Chou-
Talalay equations for multiple drug effects, which take into account 
both potency (inhibitory concentration values) and shape (slope, m) 
of dose-effect curve. 

ATP analysis 

HepG2 cells (5 x103 /100 øl/well) were incubated in a 96-well plate 
overnight in low glucose medium at 37 C in a CO2 incubator. On 
the next day, cells were treated with increasing concentrations of 
GU-MCT810, 2-DG or GU-MCT810 +2-DG combination for 5 h. 
The plate was kept for 10 min at room temperature for equilibration 
and 100 øl of Cell Titer-Glo reagent (Promega Corporation, 

Madison, WI) was added into each wells. The plate was incubated 
again for 10 min at room temperature for stabilization of 
luminescent signal and 100 øl of sample was transferred to 
opaque-walled 96-well plates, the luminescence of which was read 
in a Veritas luminometer (Turner Biosystems, Inc., Sunnyvale, CA). 
The percentage of ATP inhibition in each sample was calculated 
based on untreated sample and plotted against drug 
concentrations. 

HIF-1  assay 

Log phase HepG2 cells (4x106/5 ml) were plated in 5 ml of EMEM 
and treated with 150 øM CoCl2  with increasing concentrations of 
GU-MCT810  (0-100 øg/ml) at 37 C for 72 h in a CO2 incubator 
along with an untreated control sample. Total cellular protein was 
extracted with 0.5 ml of Invitrogen protein extraction buffer 
(Invitrogen, Federick, CA) according to the manufacturerÊs 
instructions. The protein concentration was determined and cellular 
extract equivalent to 25 øg protein was analyzed for the expression 
of HIF-1  using the human HIF-1  ELISA kit (R&D systems, 
Minneapolis, MN) according to manufacturerÊs instructions. The 
cellular HIF-1  expression (pg/ml) was plotted against various 
treatment groups. 

RNA extraction and RT-PCR 

HepG2 cells (4x106) were plated in 5 ml of EMEM and treated with 
150 mM CoCl2 and increasing concentrations of GU-MCT810  (0-
100 øg/ml) at 37 C for 72 h in a CO2 incubator along with an 
untreated control sample. Total RNA was extracted from the cells 
and 5 øg RNA was reverse transcribed to synthesize cDNAs. The 
mRNA expression of genes associated with HIF-1 pathway was 
analyzed by reverse transcriptase-polymerase chain reaction using 
0.4 øg of cDNA using gene-specific primers [14,15]. The 
expression of house-keeping genes, glyceraldehydes 3-phosphate 
dehydrogenase (GAPDH) and β-actin were also amplified as 
controls. The gene expression was quantified using gel pictures 
from three separate experiments by the UNSCAN-IT Gel software 
(Silk Scientific, Inc., Orem, UT). 

Western blot hybridization 

HepG2 cells (4 x106/5ml) were treated with 150 øM CoCl2 and 
increasing concentrations of GU-MCT810  (0-50 øg/ml) for 72 h, 
and total cellular protein was extracted with 0.5 ml of Invitrogen 
protein extraction buffer (Invitrogen, Federick, CA) according to the 
manufacturerÊs instructions. The protein concentration was 
determined and 100 øg protein was separated on 10% sodium-
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). 
The separated protein was blotted on a nitrocellulose filter, which 
was hybridized with antihuman monoclonal/polyclonal antibodies 
specific to each protein (Cell Signaling Technology, Beverly, MA; 
Life Technology corporation, Grant Island, NY; EMD Millipore, 
Billerica, MA) in a western blot procedure and detected using the 
alkaline phosphatase color detection kit (Bio-Rad laboratories, 
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Hercules, CA). The relative expression of proteins compared to 
untreated control sample was quantified using UNSCAN-IT Gel 
software (Silk Scientific Inc. Orem, UT) and the fold-level changes 
in protein expression were plotted against CA concentrations.  

Results 

Cytotoxicity of GU-MCT810 

GU-MCT810 appears to have very little cytotoxic effect against 
HepG2 cells per se (Figure. 1). 

 

Figure. 1: Cytotoxicity of GU-MCT810 in HepG2 hepatoma cell line. The tumor cells were treated with increasing concentrations of GU-MCT810 
for 72 h and cytotoxicity analyzed by MTT assay. The mean percentage of surviving cells (n=4) and standard deviation estimates were plotted 

against GU concentrations.

Synergy between GU-MCT810 and 2-deoxy glucose 

The dose-effect curve, medium-effect curve, DRI (dose-reduction 
index) and isobologram of interaction between GU-MCT810 and 2-
DG analyzed by CompuSyn software are presented in Figure. 2 
and Table 1. Even though GU-MCT810 and 2-DG as individual 
agents were weakly cytotoxic, their combination showed significant 

cytotoxicity to U-87MG cells as indicated by dose-effect and 
medium-effect curves. The combination index (CI) values were 
0.21, 0.22 and 0.88 at IC50, IC75 and IC90 levels (all <1), 
respectively, indicating a strong synergistic effect between GU-
MCT810 and 2-DG for cytotoxicity in HepG2 cells.  

 
Table 1. Dose-effect relationships of GU-MCT810 (G), 2-deoxyglucose (2-DG) and G + 2-DG in cancer cell lines 

 

Dm, Median-effect dose that produces 50% cell death; m, The shape parameter for dose-effect curve. The m value is the slope of the median-effect plot; r, The 
conformity parameter for goodness of fit. It is the linear correlation coefficient by the median-effect plot; CI,  A quantitative measure of the degree of drug 
interaction in terms of synergism and antagonism for a given endpoint of the effect measurement. (Chou and Talalay, 1981);DRI, Dose-Reduction Index , A 
measure of how many folds the dose of each drug in a synergistic combination may be reduced at a given effect level when compared with the doses of each 

drug alone. 
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nitric oxide synthase genes (NOS) studied, inducible form (iNOS) 
showed an increase with CoCl2 treatment which got inhibited 
significantly with 50 øg/ml of GU-MCT810.  On the other hand, 

endogenous NOS (eNOS) showed a non- significant decrease with 
CoCl2 treatment which got reestablished with increasing doses of 
GU-MCT810.  

 

 
Figure. 3: ATP assay in HepG2 cells treated with GU-MCT810 (G), 2-deoxyglucose (2-DG) and G+2-DG.  

The inhibition of ATP with the combination of G+2-DG was significantly better than single agents. 

 

 
 
Figure. 4: Inhibition of CoCl2-induced HIF-1  expression by GU-MCT810 in HepG2 cells. A dose-dependent inhibition was noticed with increase 
in GU-MCT810 concentration. Cells treated with CoCl2  and 0.02 øg/ml rapamycin (RAP) was used as a positive control which showed about 
25% HIF-1  inhibition. 
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Figure. 5: (a) Effect of GU-MCT810 on the expression of HIF-1-associted genes analyzed by RT-PCR assay in HepG2 cells. Cells were co-
incubated with CoCl2 + increasing doses of GU-MC810 and gene expression patterns analyzed by RT-PCR (b) Effect of CoCl2 and GU-MCT810 
on apoptosis-associated genes. (c) Quantification of expression of HIF-1-assciated genes by UNSCAN-IT gel software. (d) Quantification of 
expression of apoptosis-associated genes by UNSCAN-IT gel software. (e) Quantification of expression of nitric oxide synthase genes and cell 
proliferation association genes. The relative expression of genes (fold-increase or -decrease) is plotted against GU-MCT810 concentrations. The 
significant difference between treatments was compared by 1-way analysis of variance with TukeyÊs multiple comparison test (Graphpad Prism 
software, La Jolla, CA). (*p<0.05; **p<0.01; ***p<0.001). 

 
Of the apoptotic genes studied, CoCl2 + GU-MCT810 treatment 
affected the mRNA expression of genes such as Bax, Bcl-2, 
BNIP3, p53 and p16. Mutant p53 mRNA increased with CoCl2 
treatment which was subsequently inhibited with increasing 
concentrations of GU-MCT810. While p21 mRNA level did not 
change with CoCl2 and/or GU-MCT810, p16 mRNA was down 
regulated at 50 øg/ml concentration of GU-MCT810. 

Protein expression 

The results of western blot analysis associated with HIF-1 pathway 
are presented in Figure. 6a and the quantifications are given in Fig. 
6b&c.  GU-MCT810 treatment of HepG2 cells have affected the 

translation of several genes associated with apoptosis such as Bcl-
2, Bax, BNIP3, p21 and p53.  Bax and p21 expression decreased 
with CoCl2 treatment which then showed a dose-dependent 
increase with GU-MCT810 treatment.  On the other hand, Bcl-2, 
BNIP3 and p53 showed an increase with CoCl2 treatment, which 
was inhibited in a dose-dependent manner with GU-MCT810 

treatment (Figure. 6b). The protein expression of angiogenic 
markers, VEGF and VEFG-R, was inhibited by GU-MCT810 

treatment, although VEGF showed an initial increase with CoCl2 

treatment. IGF-2 protein also got elevated with CoCl2 treatment 
which then got inhibited with GU-MCT810 treatment. Of the 
glucose transporters, only GLUT1 protein expression was inhibited 



 Ramachandran et al. International Journal of Phytomedicine 7 (3) 324-336 [2015] 

 

PAGE | 332 |

 

 

by GU-MCT810 treatment. Similarly, both HSP70 and HSP90 
protein expression was down regulated by the GU-MCT810. 

 

 

 

 
 

 



 Ramachandran et al. International Journal of Phytomedicine 7 (3) 324-336 [2015] 

 

PAGE | 333 |

 

 

 
Figure. 6: (a) Effect of GU-MCT810 on protein expression of HIF-1-associated genes analyzed by western blot hybridization. (b&c) Quantification 
of western blots using UNSCAN-IT gel software. The relative levels of protein expression (fold-increase or -decrease) are plotted against GU-
MCT810 concentrations. The significant difference between treatments was compared by 1-way analysis of variance with TukeyÊs multiple 
comparison test (Graphpad Prism software, La Jolla, CA). (*p<0.05; **p<0.01; ***p<0.001). 

 

Discussion 
Overexpression of HIF-1  is usually noticed in various human 
cancers, probably as a consequence of intra-tumoral hypoxia or 
genetic alteration [20,21]. The interior of the tumor mass is 
progressively hypoxic with increasing size until adequate blood 
vessels are formed within the tumors. Hypoxic conditions within 
tumors can result in increased HIF-1stability and activity, which is a 
positive factor for tumorigenesis [22]. It has been suggested that 
disruption of the HIF-1 pathway might be effective in the treatment 
of pancreatic cancer, which works through the suspension of 
glucose metabolism [23] and rendering the cells susceptible to 
apoptosis. Moreover, several novel therapeutic agents such as 
Herceptin, Iressa, Calphostin C, Wortamannin and Rapamyicn that 
target signal-transduction pathways have been shown to block HIF-
1 function and have also been shown to possess antiangiogenic 

effects. Many small molecular inhibitors of HIF-1 transcriptional 
activation pathway have also been identified and shown to 
decrease HIF-1  levels, inhibit the expression of VEGF and other 
HIF-1 target genes, impair xenograft growth and vascularization, 
and inhibit angiogenesis [24].  
In the present investigation, GU-MCT810 and 2-DG as single 
agents have failed to show any appreciable cytotoxicity in HepG2 
cells. However, when these two agents were combined in 
treatment, this combination was significantly cytotoxic. GU-
MCT810 + 2-DG combination showed a strong synergism (CI 
values ranged from 0.21 to 0.88) for cytototxic effect in HepG2 
cells. Cancer cells in general exhibit increased substrate level 
glycolysis and depend less on oxidative phosphorylation for ATP 
production [25,26]. Consequently they require a high uptake of 
glucose and accelerated rates of glycolysis to survive. Hypoxia 
inside tumor leads to the production of hypoxia inducible factors 



 Ramachandran et al. International Journal of Phytomedicine 7 (3) 324-336 [2015] 

 

PAGE | 334 |

 

 

that stimulate enhanced anaerobic glycolysis. Moreover, the cells 
within the hypoxic environment are often slowly proliferating and 
resistant to cytotoxic therapies. Since these cells are more 
dependent upon on glycolysis for survival they may be 
hypersensitive to glycolytic inhibitors like 2-DG [27]. 2-DG is a 
synthetic glucose analogue that is phosphorylated by hexokinase 
upon transport into cells, but cannot be fully metabolized [25,28). 2-
DG can also cause inhibition of protein glycosylation that induces 
endoplasmic reticulum stress and gives rise to activation of the 
unfolded protein [29,30]. As a single agent, 2-DG has been shown 
to inhibit cell growth in a number of cancers, and to enhance the 
therapeutic efficacy of chemotherapeutic drugs in human 
xenografts [31-34]. However, 2-DG has been reported to protect 
cancer cells from death by activation of the Akt and mitogen-
activated protein kinase (MAPK) pathways [35].  In a recent study 
we reported that GU-MCT810 has hypolipidemic effect in HepG2 
cells and increased AMPK kinase activity. Furthermore, GU-
MCT81 inhibited adipocyte differentiation and increased cellular 
glucose uptake in 3T3LI preadipocytes [14]. It is quite possible that 
GU-MCT810 also increases 2-DG uptake further supporting the 
inhibition of glycolysis. The synergistic effect between GU-MCT810 

and 2-DG on the cytotoxicity supports the potential for reduction of 
slow growing resistant tumor cells present in the hypoxic 
environment inside the inner regions of human tumors. Upon 
transport into the cells, 2-DG is phosphorylated by hexokinase to 2-
DG-phosphate. However, unlike glucose-6-phosphate, 2-DG-
phosphate cannot be further metabolized by phosphohexose 
isomerase, which converts glucose-6-phosphate to fructose-6-
phosphate [28]. 2-DG-phosphate is trapped and accumulated in 
the cells, leading to inhibition of glycolysis mainly at the step of 
phosphorylation of glucose by hexokinase. Inhibition of this rate-
limiting step by 2-DG causes a depletion of cellular ATP, leading to 
blockage of cell cycle progression and cell death in vitro [36]. In the 
present investigation, GU-MCT810 +2-DG combination has 
produced a synergistic inhibitory effect on cellular ATP as 
compared to single agents. It is quite possible that the synergistic 
cytotoxic effect of this combination may be due to the increased 
cellular ATP depletion of cancer cells [25].  
GU-MCT810 treatment of CoCl2-challenged HepG2 cells showed a 
dose-dependent inhibition of HIF-1  expression in the present 
investigation. It is known that CoCl2 can act as hypoxia mimicking 
agents [10]. It is also well established that HIF-1  promotes the 
expression of genes encoding proteins that increase the cellular 
supply of oxygen and promote survival in periods of cellular 
hypoxic stress [37-40].  This transcription factor has been shown to 
regulate more than 100 downstream genes with varying functions 
such as angiogenesis, glucose metabolism, apoptosis, 
erythropoesis, cell proliferation and survival [41]. Gene expression 
analysis performed in HepG2 cells treated with CoCl2+ GU-
MCT810 treatment showed that CoCl2 activated HIF-1  and HIF-1β 
genes were down regulated by GU-MCT810 at mRNA level. Also 
ELISA results showed that at the protein expression level, HIF-1  
was down regulated. Several authors have described the changes 

in mRNA expression of both HIF-1  and HIF-1β subunits [42-44]. 
Under normoxic conditions, when HIF-1  and HIF-1β are 
constitutively transcribed and translated, the abrogation of HIF-1 
activity results from constitutive HIF-1  degradation [45]. Our 
results also show that genes such as Bcl-2, P53 and VEGF were 
down regulated by GU-MCT810 at mRNA level and protein level. 
Then there are genes such as VEGF-R, GLUT1 and IGF-2 that 
were down regulated at the protein level and not at mRNA level. 
This discrepancy is plausible because of post-translational 
modification of these proteins [46,47]. Further, there are genes 
such as Bax, GLUT3 and P53 whose protein expression increased 
with no clear cut difference in mRNA levels which could also be 
attributed to post translational modification and stabilization [48,49]. 
In conclusion, the results show that GU-MCT810 affects the HIF-1  
pathway affecting several genes involved in apoptosis, 
angiogenesis, and glucose transport and cell proliferation. The 
combination of GU-MCT810 and 2-DG is synergistic for cytotoxic 
effect and it may inhibit HIF-1 pathway, the gene expression 
patterns of which has to be investigated further. Also the inhibition 
of HIF-1  by GU-MCT810 will be useful for elimination of drug 
resistant cells present in the hypoxic environment of the tumor.  
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