Evaluation of total phenolics, antioxidant and antiproliferative activities of rhizome extracts from select Zingiberaceae species in South India


  • Soumya Tumbath University of Calicut, Kerala India.
  • Lakshmipriya Theyyankandi University of Calicut, Kerala India.
  • Jayasree Pullampara Rajamma University of Calicut, Kerala India.
  • Manish Kumar Panickassery Ramakrishnan University of Calicut, Kerala India.


Zingiberaceae, organic solvent extracts, total phenolic content, antioxidant potential, antiproliferative activity


Zingiberaceae family members are well known for their ethnobotanical diversity and medicinal importance. This study aimed to evaluate total phenolic content, antioxidant and antiproliferative capacity of five different organic solvent extracts prepared from the rhizomes of Curcuma mutabilis (CM), Curcuma haritha (CH), Curcuma neilgherrensis (CN) and Zingiber anamalayanum (ZA), four hitherto unexplored Zingiberaceae species. Folin-Ciocalteu method and DPPH radical scavenging assay were used to determine respectively the total phenolic content and antioxidant capacity. The antiproliferative activity of the extracts were tested against four human cancer cell lines – K562, REH, Nalm6 and MCF7 to ascertain the IC50 values. Based on total phenolic content, extracts were classified into high-H (> 150 mg GAE/g), medium-M (50-150 mg GAE/g) and low-L (< 50 mg GAE/g) categories. Likewise, percentages of DPPH scavenging activity of extracts were also grouped into high-H (> 50%), medium-M (25 – 50%) and low-L (< 25%) categories. Ten of the twenty extracts exhibited strong cytotoxicity with an IC50 value less than 30 μg/mL. To our knowledge, this is the first report on quantitative assessment of total phenolics, antioxidant and antiproliferative potential of organic solvent extracts of rhizomes from the above mentioned plants.


. Amin A, Gali-muhtasib H, Ocker M, Schneider-stock R. Overview of Major Classes of Plant-Derived Anticancer Drugs. Int J Biomed Sci. 2009;5(1):1-11. [2]. Cragg GM, Newman DJ. Plants as a source of anti-cancer agents. J Ethnopharmacol. 2005;100(1-2):72-79. doi:10.1016/j.jep.2005.05.011. [3]. Pan L, Chai H, Kinghorn AD. The continuing search for antitumor agents from higher plants. Phytochem Lett. 2010;3(1):1-8. doi:10.1016/j.phytol.2009.11.005. [4]. Gali-Muhtasib H, Hmadi R, Kareh M, Tohme R, Darwiche N. Cell death mechanisms of plant-derived anticancer drugs: Beyond apoptosis. Apoptosis. 2015;20(12):1531-1562. doi:10.1007/s10495-015-1169-2. [5]. Sasikumar B. Genetic resources of Curcuma: diversity, characterization and utilization. Plant Genet Resour. 2005;3(2):230-251. doi:10.1079/PGR200574 [6]. Tushar, Basak S, Sarma GC, Rangan L. Ethnomedical uses of Zingiberaceous plants of Northeast India. J Ethnopharmacol. 2010;132(1):286-296. doi:10.1016/j.jep.2010.08.032. [7]. Afzal A, Oriqat G, Khan MA, Jose J, Afzal M. Chemistry and Biochemistry of terpenoids from Curcuma and Related Species. J Biol Acti Pdts from Nat. 2015;3(1):1-15. doi:10.1080/22311866.2013.782757 [8]. Sahu RP, Batra S, Srivastava SK. Activation of ATM/Chk1 by curcumin causes cell cycle arrest and apoptosis in human pancreatic cancer cells. Br J Cancer. 2009;100(9):1425-1433. doi:10.1038/sj.bjc.6605039. [9]. Wilken R, Veena MS, Wang MB, Srivatsan ES. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer. 2011;10(1):12. doi:10.1186/1476-4598-10-12. [10]. Salem M, Rohani S, Gillies ER. Curcumin, a promising anti-cancer therapeutic: a review of its chemical properties, bioactivity and approaches to cancer cell delivery. RSC Adv. 2014;4(21):10815 - 10829. doi:10.1039/c3ra46396f. [11]. Kim JS, Lee SI, Park HW, Yang JH, Shin TY, Kim YC, Baek NI, Kim SH, Choi SU, Know BM, Leem KH, Jung MY, Kim DK. Cytotoxic components from the dried rhizomes of Zingiber officinale Roscoe. Arch Pharm Res. 2008;31(4):415-418. doi:10.1007/s12272-001-1172-y. [12]. Kirana C, Jones GP, Record IR, McIntosh GH. Anticancer properties of panduratin A isolated from Boesenbergia pandurata (Zingiberaceae). J Nat Med. 2007;61(2):131-137. doi:10.1007/s11418-006-0100-0. [13]. Weng H-Y, Hsu M-J, Wang C-C, Chen B-C, Hong C-Y, Chen M-C, Chiu W-T, Lin C-H. Zerumbone suppresses IKKalpha, Akt, and FOXO1 activation, resulting in apoptosis of GBM 8401 cells. J Biomed Sci. 2012;19(1):86. doi:10.1186/1423-0127-19-86. [14]. Mangaly JK, Sabu M. A taxonomic revision of South Indian species of Curcuma Linn. (Zingiberaceae). Rheedea. 1993;3(2):139-171. [15]. Sujanapal P, Sasidharan N. Zingiber anamalayanum Sp. nov. (Zingiberaceae) from India. Noradic J Bot. 2010; 28:288-293. doi:10.1111/j.1756-1051.2009.00530.x. [16]. Srivastava S, Srivastava S, Chitranshi N, Dan M, Rawat AKS, Pushpangadan P. Pharmacognostic evaluation of Curcuma haritha Linn. J Sci Ind Res. 2006;65:916-920. [17]. Raj G, Baby S, Dan M, Rasheed A, Thaha M, Sethuraman MG, George V. Volatile constituents from the rhizomes of Curcuma haritha Mangaly and Sabu from southern India. Flavor fragr J. 2008;23:348-352. doi:10.1002/ffj. [18]. Mahalakshmipuram SP, Ramachandran A, Nishteswar K, Chandola HM. A preface study on exploring the pharmacodynamics of Curcuma neilgherrensis Wight - A folklore medicine. Indian J Tradit Know. 2013;12:288-294. [19]. Chaithra D, Yasodamma N, Alekhya C. Phytochemical screening of Curcuma neilgherrensis wt. an endemic medicinal plant from Seshachalam Hills (A.P.) india . Int J Pharma and Bio Sci. 2013;4(2):409-412. [20]. Aruna P, Shruti B, Archana A, Sameer H, Villasrao J. Antifungal activity of Curcuma neilgherrensis Wt. a wild medicinal plant. Indo Am Pharm Res. 2013;3(8):6076-6082. [21]. Salim M, Kabeer TKA, Nair SA, Dan M. Chemical profile , antiproliferative and antioxidant activities of rhizome oil of Zingiber anamalayanum from Western Ghats in India. Nat Pdt Res. 2015;6419. doi:10.1080/14786419.2015.1094802. [22]. Gupta S, Prakash J. Studies on Indian green leafy vegetables for their antioxidant activity. Plant Foods Hum Nutr. 2009;64(1):39-45. doi:10.1007/s11130-008-0096-6. [23]. Rajan I, Rabindran R, Jayasree PR, Kumar PRM. Antioxidant potential and oxidative DNA damage preventive activity of unexplored endemic species of Curcuma. Indian J Exp Biol. 2014;52(2):133-138. [24]. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55-63. doi:10.1016/0022-1759(83)90303-4. [25]. Kähkönen MP, Hopia a I, Vuorela HJ, et al. Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem. 1999;47(10):3954-3962. doi:10.1021/jf990146l. [26]. Gülçin İ, Huyut Z, Elmastaş M, Aboul-Enein HY. Radical scavenging and antioxidant activity of tannic acid. Arab J Chem. 2010;3(1):43-53. doi:10.1016/j.arabjc.2009.12.008. [27]. Fernandes de Oliveira A, Sousa Pinheiro L, Souto Pereira C, et al. Total Phenolic Content and Antioxidant Activity of Some Malvaceae Family Species. Antioxidants. 2012;1:33-43. doi:10.3390/antiox1010033. [28]. Alsabri SG, El-Basir HM, Rmeli NB, Mohamed SB, Allafi AA, Zetrini AA, Salem AA, Mohamed SS, Gbaj A, El-Baseir MM. Phytochemical screening, antioxidant, antimicrobial and anti-proliferative activities study of Arbutus pavarii plant. J Chem Pharm Res. 2013;5(1):32-36. http://jocpr.com/vol5-iss1-2013/JCPR-2013-5-1-32-36.pdf.




How to Cite

Soumya Tumbath, Lakshmipriya Theyyankandi, Jayasree Pullampara Rajamma, Manish Kumar Panickassery Ramakrishnan. Evaluation of total phenolics, antioxidant and antiproliferative activities of rhizome extracts from select Zingiberaceae species in South India. ijp [Internet]. 2016 Jun. 30 [cited 2023 Nov. 30];8(3):337-42. Available from: https://ijp.arjournals.org/index.php/ijp/article/view/477



Original Research Articles