Effect of Phyllanthus polyphyllus extract on DNA binding studies

Authors

  • Swapna G Institute of Pharmaceutical Technology, Sri Padmavati Mahila Viswavidyalayam (Women's University), Tirupati. India.
  • Bharathi K Institute of Pharmaceutical Technology, Sri Padmavati Mahila Viswavidyalayam (Women's University), Tirupati. India
  • Rajkapoor B Department of Pharmacology, Faculty of Medicine, Sebha University, Sebha, Libya.
  • KVSRG Prasad Institute of Pharmaceutical Technology, Sri Padmavati Mahila Viswavidyalayam (Women's University), Tirupati. India.

Keywords:

Phyllanthus polyphyllus, Absorption Spectroscopy, Viscometry, Cyclic Voltammetry, Calf Thymus DNA, Intercalation

Abstract

Phyllanthus polyphyllus has demonstrated potent in vitro anticancer activity against various tumor cell lines. For a better understanding of the mechanism of action, binding studies of methanolic extract of Phyllanthus polyphyllus (PP) with Calf Thymus (CT) DNA were studied using absorption spectroscopy, viscometry and cyclic voltammetry. PP displayed binding properties to the CT-DNA and was found to interact with CT-DNA through intercalation, as demonstrated by a hypochromic effect and blue-shift in the UV spectra. An increase in the viscosity of CT-DNA was observed. The changes in the current and potential in cyclic voltammetric experiments demonstrate intercalative interaction between the PP and the CT-DNA.

References

. Navarro JA, Salas JM, Romero MA, Vilaplana R, Gonzalez-Vilchez F, Faure R. cis-[PtCl2(4,7-H-5-methyl-7-oxo[1,2,4]triazolo[1,5-a]pyrimidine)2]: a sterically restrictive new cisplatin analogue. Reaction kinetics with model nucleobases, DNA interaction studies, antitumor activity, and structure-activity relationships. J Med Chem. 1998;41(3):332-8.

. Arjmand F, Parveen S, Afzal M, Toupet L, Ben Hadda T. Molecular drug design, synthesis and crystal structure determination of CuII-SnIV heterobimetallic core: DNA binding and cleavage studies. Eur J Med Chem. 2012;49:141-50.

. Zhang G, Fu P, Wang L, Hu M. Molecular spectroscopic studies of farrerol interaction with calf thymus DNA. J Agric Food Chem. 2011;59(16):8944-52.

. Metcalfe C, Thomas JA. Kinetically inert transition metal complexes that reversibly bind to DNA. Chem Soc Rev. 2003;32(4):215-24.

. Gilpin RK, Pachla LA. Pharmaceuticals and related drugs. Anal Chem. 1997;69(12):145R-63R.

. Zhang G, Fu P, Pan J. Multispectroscopic studies of paeoniflorin binding to calf thymus DNA in vitro. J Lumin. 2013;134:303-9.

. Barton JK, Goldberg JM, Kumar CV, Turro NJ. Binding modes and base specificity of tris (phenanthroline) ruthenium (II) enantiomers with nucleic acids: tuning the stereoselectivity. J Am Chem Soc. 1986;108:2081-2088.

. Zhao GC, Zhu JJ, Chen HY. Spectroscopic studies of the interactive model of methylene blue with DNA by means of h-cyclodextrin. Spectrochim Acta A Mol Biomol Spectrosc. 1999;55: 1109–1117.

. Sandstrom K, Warmlander S, Leijon M, Graslund A. 1H NMR studies of selective interactions of norfloxacin with double-stranded DNA. Biochem Biophys Res Commun. 2003;304(1):55-9.

. Shahabadi N, Heidari L. Binding studies of the antidiabetic drug, metformin to calf thymus DNA using multispectroscopic methods. Spectrochim Acta A Mol Biomol Spectrosc. 2012;97:406-10.

. Ozkan SA, Ozkan Y, Senturk Z. Electrochemical reduction of metronidazole at activated glassy carbon electrode and its determination in pharmaceutical dosage forms. J Pharm Biomed Anal. 1998;17(2):299-305.

. Perrin DD, Armarego WLF, Perrin DR. Purification of laboratory chemicals. 2d ed. Oxford ; New York: Pergamon Press; 1980. x, 568 p. p.

. Satyanarayana S, Dabrowiak JC, Chaires JB. Tris(phenanthroline)ruthenium(II) enantiomer interactions with DNA: mode and specificity of binding. Biochemistry. 1993;32(10):2573-84.

. Chauhan M, Banerjee K, Arjmand F. DNA binding studies of novel Copper(II) complexes containing L-tryptophan as chiral auxiliary: in vitro antitumor activity of Cu-Sn2 complex in human neuroblastoma cells. Inorg Chem. 2007;46(8):3072-82.

. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organism. J Mol Biol.1961; 3: 208.

. Mansouri-Torshizi H, Saeidifar M, Khosravi F, Divsalar A, Saboury AA, Hassani F. DNA Binding and Antitumor Activity of alpha-Diimineplatinum(II) and Palladium(II) Dithiocarbamate Complexes. Bioinorg Chem Appl. 2011;2011:394506.

. Kumar RS, Arunachalam S, Periasamy VS, Preethy CP, Riyasdeen A, Akbarsha MA. Surfactant-cobalt(III) complexes: synthesis, critical micelle concentration (CMC) determination, DNA binding, antimicrobial and cytotoxicity studies. J Inorg Biochem. 2009;103(1):117-27.

. Kuruvilla E, Nandajan PC, Schuster GB, Ramaiah D. Acridine-viologen dyads: selective recognition of single-strand DNA through fluorescence enhancement. Org Lett. 2008;10(19):4295-8.

. Wilson WD, Ratmeyer L, Zhao M, Strekowski L, Boykin D. The search for structure-specific nucleic acid-interactive drugs: effects of compound structure on RNA versus DNA interaction strength. Biochemistry. 1993;32(15):4098-104.

. Oliveira-Brett AM, Diculescu VC. Electrochemical study of quercetin-DNA interactions: part I. Analysis in incubated solutions. Bioelectrochemistry. 2004;64(2):133-41.

. Bloomfield VA, Crothers DM, Tinoco I. Physical chemistry of nucleic acids. New York,: Harper & Row; 1974. x, 517 p. p.

. Lafayette EA, Vitalino de Almeida SM, Pitta MG, Carneiro Beltrao EI, da Silva TG, Olimpio de Moura R, et al. Synthesis, DNA binding and topoisomerase I inhibition activity of thiazacridine and imidazacridine derivatives. Molecules. 2013;18(12):15035-50.

. Shen HY, Liu YQ, Gao J, Zhen HM, Zhu N, Li J. In vitro study of DNA interaction with melamine and its related compounds. DNA Cell Biol. 2011;30(4):255-64.

. Arjmand F, Aziz M. Synthesis and characterization of dinuclear macrocyclic cobalt(II), copper(II) and zinc(II) complexes derived from 2,2,2('),2(')-S,S[bis(bis-N,N-2-thiobenzimidazolyloxalato-1,2-ethane)]: DNA binding and cleavage studies. Eur J Med Chem. 2009;44(2):834-44.

. Satyanarayana S, DabrowiakC, Chaires JB. (1992) Neither .DELTA.- nor .LAMBDA.-tris(phenanthroline)ruthenium(II) binds to DNA by classical intercalation . Biochemistry 31, 9319-24.

. Wang XL, Chao H, Li H, Hong XL, Liu YJ, Tan LF, et al. DNA interactions of cobalt(III) mixed-polypyridyl complexes containing asymmetric ligands. J Inorg Biochem. 2004;98(6):1143-50.

. Hart JP. Electroanalysis of biologically important compounds. New York: E. Horwood; 1990.

. Yang ZS, Wang YL, Zhao GC. The interaction of copper-bipyridyl complex with DNA and cleavage to DNA. Anal Sci. 2004;20(8):1127-30.

. Annaraj J, Srinivasan S, Ponvel KM, Athappan P. Mixed ligand copper(II) complexes of phenanthroline/bipyridyl and curcumin diketimines as DNA intercalators and their electrochemical behavior under Nafion and clay modified electrodes. J Inorg Biochem. 2005;99(3):669-76.

. Lu X, Zhang M, Kang J, Wang X, Zhuo L, Liu H. Electrochemical studies of kanamycin immobilization on self-assembled monolayer and interaction with DNA. J Inorg Biochem. 2004;98(4):582-8.

. Srinivasan S, Annaraj J, Athappan P. Spectral and redox studies on mixed ligand complexes of cobalt(III) phenanthroline/bipyridyl and benzoylhydrazones, their DNA binding and antimicrobial activity. J Inorg Biochem. 2005;99(3):876-82.

. Vaidyanathan VG, Nair BU. Synthesis, characterization and electrochemical studies of mixed ligand complexes of ruthenium(ii) with DNA. Dalton Trans. 2005(17):2842-8.

Downloads

Published

30-09-2014

How to Cite

1.
Swapna G, Bharathi K, Rajkapoor B, KVSRG Prasad. Effect of Phyllanthus polyphyllus extract on DNA binding studies. ijp [Internet]. 2014 Sep. 30 [cited 2024 Nov. 22];6(3):335-40. Available from: https://ijp.arjournals.org/index.php/ijp/article/view/342

Issue

Section

Original Research Articles