

Review Article

A Complete Profile on *Chimphila Umbellata*-Traditional Uses, Pharmacological Activites And Phytoconstituents

Raja S¹, Ravindranadh K¹, Keerthi T¹

*Corresponding author:

Raja S

¹GITAM Institute of Pharmacy, GITAM University, Visakhapatnam- Andhra Pradesh, India-Pincode-530 045

Abstract

Indian medicinal plants are used as ancient style of providing helps too many ailments. Presently, variant peoples are looking on healthful plants for his or her primary health care wishes. The current review designates the morphological, ethnopharmacological aspects and active principles of *Chimaphila umbellata* Linn. Being it's a vital healthful plant in Indian medication this are supposed to vary medical specialty activities like analgesic, anti-inflammatory, antibacterial, antifungal and skin sensitizing activities. Different active constituents such as quinones, polyphenols, tannins, sterols, flavonoids, triterpenes, chimphilin, arbutin, toluquinol, renifolin, taraxerol, arbutin, isohomoarbutin, quercetin, ursolic acid, β -sitosterol and hyperoside are a unit to date according in *Chimaphila umbellata*. Well conducted biological studies area unit still required for many indications of this species. This review is useful to make interest towards *Chimaphila umbellata* and should be helpful in rising new formulations with additional therapeutic and economical worth. **Keywords:** *Chimaphila umbellate*, chimphilin, arbutin, isohomoarbutin, hyperoside.

Introduction

Chimaphila umbellata commonly called as Pipsissewa or Princepine, Wintergreen, Eastern Teaberry, and Checkerberry. It belongs to the Pyloraceae family previously placed in the Ericaceae family. Its name is derived from the Greek ceima (cheima) "winter", filos (philos) "lover". Hence "winter lover", an appropriate name for a circumboreal genus of cold climate evergreen shrublets, umbellata, from the Latin, "umbrella", literally "little shadows", a reference to the flower cluster *Chimphila umbellate*. It is a small perennial flowering plant found in dry woodlands or sandy soils. It is native throughout the cool temperate. *Chimaphila umbellate* consist of four subspecies. Subspecies name and their location were mentioned in Table 1.

Table 1:	Subspecies	name and	their	location
----------	-------------------	----------	-------	----------

Subspecies Name	Location
Chimaphila umbellata subsp.	Europe, Asia
umbellata	
Chimaphila umbellata subsp.	Southwestern North
acuta	America
Chimaphila umbellata subsp.	Northeastern North
cisatlantica	America
Chimaphila umbellata subsp.	Northwestern North
occidentalis	America

Botanical Description of Chimphila umbellata

bright green, toothed leaves arranged in opposite pairs or whorls of 3-4 along the stem. Leaves have a shallowly toothed margin. where the teeth have fine hairs at their ends. The flowers are white or pink, produced in a small umbel of 4-8 together. Flowering stems bear terminal umbel-like corymbs consisting of 3-10 symmetrical, drooping flowers, 10-15mm wide [1]. There are five pink-white petals, five sepals and 10 stamens; the ovary is superior maturing to produce an erect capsule. Fruits are depressed globose capsules which often persist through winter. Flowers white, bell-like, often with a touch of pink, in 2 or 3 flower umbels. Flowering is in July, August and fruiting is in August, and September. The flowers are hermaphrodite and are pollinated by insects. Chimphila umbellata can grow in very acid soil it can grow in full shade or semi shade, it prefers moist soil. Botanical description and Taxonomical classification of Chimphila umbellate was illustrated in Table 2 & Table 3.

Chimphila umbellata grows 10-35cm tall, and has evergreen shiny,

Table 2: Botanica	I description of	Chimphila umbella	ate
-------------------	------------------	-------------------	-----

Flower	3-10 symmetrical, drooping	
	flowers, 10-15mm wide.	
Flowering season	July, August	
Flowers color	White or Pink,	
Fruiting season	August, and September	
Growing conditions	Very acid soil	
Leaves	Green toothed leaves	
Plant height	10-35cm tall	
Pollination	Through Insects	

Table 3: Taxonomical classification of Chimphila umbellate

Kin a da na	Diantas
Kingdom	Plantae
Subkingdom	Viridaeplantae
Phylum	Tracheophyta
Sub phylum	Euphyllophytina
Infra phylum	Radiatopses
Class	Spermatopsida
Sub class	Asteridae
Super order	Ericanae
Super division	Eudicots
Division	Asterids
Subclass	Asteridae
Order	Ericales
Family	Ericaceae
Sub family	Monotropoideae
Tribe	Pyroleae
Genus	Chimaphila
Species	umbellata

Ethnomedical information of Chimaphila umbellata

Chimaphila umbellata leaves were widely used by the native North American Indians in the treatment of aches and pains and to help breathing whilst hunting or carrying heavy loads. The leaves, and the oil, possess different pharmacological activities such as analgesic, anti-inflammatory, aromatic, astringent, carminative, diuretic, emmenagogue, stimulant and tonic [2]. An infusion of the leaves is used to relieve flatulence and colic. Used externally, the fresh leaves are rubefacient and internally they are of great use in cardiac and kidney diseases, chronic rheumatism and scrofula [2]. The plant, especially in the form of the essential oil, is most useful when applied externally in the treatment of acute cases of rheumatism, sciatica, myalgia, sprains, neuralgia, cellulites' and catarrh [3]. The plant used for astringent, diaphoretic, diuretic, febrifuge, rubefacient, stimulant and tonic. An infusion of the plant has been drunk in the treatment of rheumatism and colds. A poultice of the root used for treating pain. Pipsissewa was much used by many tribes of native North American Indians to induce sweating and treat fevers, including typhus [4]. An infusion is used in the treatment of various problems related to the urinary system; it is also prescribed for more serious conditions such as kidney stones and gonorrhea. A decoction is very efficacious in the treatment of skin diseases [2]. Different parts of Chimaphila umbellate with ethnomedical information are stated in Table No.4.

Table 4: Ethnamedicalinformation of Chimaphila umbellate

Part of the Plant	Uses	References
Fresh leaves	Rubefacient and internally they are of great use in cardiac and kidney diseases, chronic rheumatism and scrofula.	[2]
Leaves & oil	Analgesic, anti-inflammatory, aromatic, astringent, carminative, diuretic, emmenagogue, stimulant and tonic	[2]
Oil	Rheumatism, sciatica, myalgia, sprains, neuralgia and catarrh, cellulites'.	[3]
Plant	Diaphoretic, febrifuge, rubefacient	[2]
Whole plant (Decoction)	Treat skin diseases	[2]
Whole plant (Infusion)	Treat fevers, including typhus	[4]

Pharmacological Information of Chimaphila umbellate

Different parts of *Chimaphila umbellata* with pharmacological information are mentioned in Table 5.

Antibacterial activity of Chimaphila umbellata

The bactericide activity in ethanol extract of *Chimaphila umbellate* was reported by [5]. The bactericide activity of *C. umbellata* ethanol extract was studied against gram-positive organism (*Staphylococcus aureus, Bacillus subtilis*) and gram-negative bacteria (*Escherichia coli, C. albicans*). The ethanol extract was simpler against all microorganism strains tested. The bactericidal property is mainly due to the presence of chimaphilin and arbutin.

Antioxidant activity activity of Chimaphila umbellate

Different extracts of *Chimaphila umbellate* possesses a sturdy in vitro inhibitor activity. This study was centered on invitro activity by victimization fully completely different parameters like 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay, reducing power and invitro lipoid peroxidation. Results prompt that each extracts of *Chimaphila umbellate* were found to be considerably effective in scavenging DPPH [6].

Anti-inflammatory activity of Chimaphila umbellate

The antiinflammatory activity *Chimaphila umbellate* leaves and flowers by varied carrageenan-induced inflammation rat model was highlighted [7]. From the results it is suggested that plant extract

suppressed pro-inflammatory cytokines and reduced bladder weight in rats with surgically induced bladder outlet obstruction. This study put together disclosed the presence of some phytoconstituents like flavanoids jointly showed anti-inflammatory drug property of *Chimaphila umbellate* leaves and flowers.

Antifungal property of Chimaphila umbellata

By using bioassay-guided isolation it was confirmed that chimaphilin was the main antifungal constituent of *Chimaphila umbellata*, and using a chemical-genetic screening method

determined that chimiphalin interferes with cell wall, mitochondrial, transcription and other cellular functions [6].

Skin sensitizing potential of Chimaphila umbellata

Investigated the skin sensitizing potential of the active constituent chimaphilin on female guinea pigs was studied [8]. Using the open epicutaneous (OET) and Freund's complete adjuvant techniques (FCA), results showed that chimaphilin showed weak sensitizing potency in the OET and moderate sensitizing capacity in the FCA method. This might be due to nucleophilic attack at the 3rd carbon atom of the quinoid ring of chimaphilin.

Table 5 Pharmacological Information of Chimaphila umbellate

Part of the plant	Solvent used for extraction	Uses	References
Whole plant	Ethanol	Antibacterial	[5]
Whole plant		Antioxidant	[6]
leaves and flowers	Methanol	Anti-inflammatory	[7]
Isolated	Ethanol	Antifungal	[6]
compound(chimaphilin)			
Isolated		Skin sensitizing poteintial	[8]
compound(chimaphilin)			

Phytoconstituents Information of Chimaphila umbellate

Phytochemical analysis of *Chimaphila umbellate* unconcealed that it consists of assorted phytoconstituents like quinones, phenols, phenolic glycosides, polyphenols, terpenes and sterols. A neutral crystalline substance referred to as chimaphilin from *Chimaphila umbellate* was isolated [9]. A part from this many alkylated benzohydroquinones, antimicrobial toluquinol and organic compound renifolin also been reported [10-11]. Simple phenols including methyl salicylate and salicylic acid methyl ester are reported [10]. Leaves and flowers area unit reportedly rich in different flavonoids, as well as hyperoside, kaempferol and avicularin [10, 12]. In an exceedingly comprehensive investigation of the species, they [5] isolated the free triterpenes, taraxerol, arbutin, isohomoarbutin, quercetin, ursolic acid, and β -sitosterol. *Chimaphila umbellate* contains, starch, gum, pectin, resin, a lignan, mineral salts [9, 10] as well as the hydrocarbons nonacosane and hentriacontane [5] in a smaller quantity. Active constituents with their IUPAC names and structures are given in Table 6 and 7.

Table 6: Active constituent's information of Chimaphila umbellate

Plant part	Solvent used for Extraction	Use	Reference
Plant		Chimaphilin	[9]
Whole plant		Toluquinol, renifolin	[10,11]
Plant		Arbutin, isohomoarbutin, methyl salicylate and salicylic acid methyl ester	[10]
Leaves	Ethyl acetate	Epicatechin gallate	[5]
Leaves & Flowers	Ethyl acetate	Quercetin, hyperoside, kaempferol, avicularin	[10, 12]
Plant		Starch, gum, pectin, resin, a lignan, mineral salts	[9, 10]

NAME	IUPAC NAME	STRUCTURE
Arbutin	(2S,3R,4S,5S,6R)-2-(4-hydroxyphenoxy)-tetrahydro-6- (hydroxymethyl)-2H-pyran-3,4,5-triol	
Avicularin	3-((3R,4S,5S)-tetrahydro-3,4,5-trihydroxy-2H-pyran-2-yloxy)-5,7- dihydroxy-2-(3,4-dihydroxyphenyl)-4H-chromen-4-one	
Chimaphlin	2,7-dimethylnaphthalene-1,4-dione	H ₃ C CH ₃ O
Epi catechin gallate	(2R,3R)-3,4-dihydro-5,7-dihydroxy-2-(3,4-dihydroxyphenyl)-2H- chromen-3-yl 3,4,5-trihydroxybenzoate	
Hentriacontane	Hentriacontane	~~~~~~

Table 7: Phytoconstituents with IUPAC names and structures

Hyperoside	3-((2S,3S,4R,5R)-tetrahydro-3,4,5-trihydroxy-6-(hydroxymethyl)- 2H-pyran-2-yloxy)-7-hydroxy-2-(3,4-dihydroxyphenyl)-5-methyl- 4H-chromen-4-one	
Isohomoarbutin	(2S,3S,4S,5R,6R)-6-(4-hydroxy-2-methylphenoxy)-tetrahydro-2H- pyran-2,3,4,5-tetraol	
Kaempferol	3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one	
Methylsalicylate	2-(2-hydroxyphenyl)-2-oxoacetic acid	ОНОН
Quercetin	3,5,7-trihydroxy-2-(3,4-dihydroxyphenyl)-4H-chromen-4-one	но он он он он он он он
Renifolin	(2S,3R,4S,5S,6R)-2-(1,2,3,4-tetrahydro-5-hydroxy-2,7- dimethylnaphthalen-8-yloxy)-6-ethyl-tetrahydro-2H-pyran-3,4,5- triol	
Taraxerol	1,2,3,4,4a,5,6b,7,8,8a,9,10,11,12,12a,12b,13,14,14a,14b- icosahydro-2,2,4a,6b,9,9,10,12a,14a-nonamethylpicene	

Toluquinol	2,5-dimethylbenzene-1,4-diol	H ₃ C OH CH ₃
Triacontane	Triacontane	
Ursolic acid	(1S,2R,4aR,6aS,6bR,10S,12aS,12bR,14bR)- 1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b- icosahydro-1,2,4a,6a,6b,9,9,10,12a,12b,14b-undecamethylpicene	
β-Sitosterol	3S,8S,9S,10R,13R,14R,17R)-17-((2R,5R)-5-ethyl-6-methylheptan- 2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-8,10,13- trimethyl-1H-cyclopenta[a]phenanthren-3-ol	

Conclusion

The extensive literature survey exposed that *Chimaphila umbellate* is important medicinal plant with diverse ethnomedical and pharmacological spectrum. The plant shows the occurrence of many natural constituents which are answerable for wide-ranging pharmacological and medicinal properties. The evaluation needs to be carried out on *Chimaphila umbellate* in order to uses and preparation of the plant in their practical clinical applications, which can be recycled for the welfare of the mankind.

References

- Barton. Plants for a Future (2010) *Chimaphila umbellata* - (L.) W. P.C. Grieve. A Modern Herbal 1930.
- [2]. Scudder JM. The American Eclectic Materia Medica and Therapeutics. Published by the Author. Cincinnati.1883; 243: 490.

financial assistance to GITAM institute of pharmacy, GITAM University, Visakhapatnam, Andhra Pradesh, India.

Acknowledgements

The authors are thankful to UGC (New Delhi, India) for providing

Conflict of Interest

No

- [3]. Huxley A. The New RHS Dictionary of Gardening. 1992.
- [4]. Sheth K, Catalfom P, Sciuchetti LA, & French DH. Phytochemical investigation of the leaves of *Chimaphila umbellata*. Lloydia 1967; 30: 78-83.
- [5]. Galvin IJ, Mir-Rashed N, Jessulat M, Atanya M, Golshani A, Durst T, & Petit

P. Antifungal and antioxidant activities of the phytomedicine pipsissewa, *Chimaphila umbellata.* Phytochemistry 2008; 69: 738-746.

[6]. Oka M, Tachibana M, Noda K, Inoue N, Tanaka M, & Kuwabara K. Relevance of anti-reactive oxygen species activity to anti-inflammatory activity of components of Eviprostat, a

phytotherapeutic agent for benign prostatic hyperplasia. Phytomedicine 2007; 14(7-8): 465-472.

- [7]. Hausen BM. and Schiedermair I. the sensitizing capacity of chimaphilin, a naturally-occurring quinone. Contact Dermatitis 1988; 19(3): 180-183.
- [8]. Fairbank S. Chemical Examination of *Chimaphila umbellata*. American

Journal of Pharmacy 1869; 32: 254-258.

- [9]. Duke J. Handbook of phytochemical constituents of GRAS herbs and other economic plants. Boca Raton, FI: CRC Press. 2001.13
- [10]. Pedersen JA. On the application of electron paramagnetic resonance in the study of naturally occurring

quinones and quinols. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2002; 58(6): 1257-1270.

[11]. Gruenwald J. PDR for herbal medicines 2nd ed. Montrace, NJ: Medical Economics. 2000.