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indeed, has anti-inflammatory and antimicrobial properties [8, 10]. 
These findings suggest the need to study the potential value of 
copaiba in contemporary attempts to develop cost effective wound 
treatment protocols.  
In a previous study [9], we used cultures of fibroblasts to assess 
the cytotoxicity of C. langsdorffii oleoresin and a rabbit ear 
excisional wound model of injury and repair to assess its healing 
effects, using different concentrations of oleoresin. We found no 
cytotoxicity of copaiba oleoresin up to 100 øg/mL. Moreover, a 
standard pharmaceutical cream with 10% copaiba was not toxic 
but promoted healing. And more recently, we showed that 10% 
copaiba cream has antimicrobial properties against 
Staphylococcus aureus and Streptococcus pyogenes in a full 
thickness rat skin wound model [10]. Encouraged by these 
findings, we examined the wound healing effects of 10% copaiba 
cream in the same full thickness rat skin wound, a model of 
contractile wound different from the non-contractile rabbit ear 
model. Specifically, our aim was to determine the wound healing 
effect of 10% copaiba cream morphometrically and histologically, 
and to uncover some of the mechanisms underlying the 
biochemical effects of copaiba by quantifying collagen synthesis 
and matrix metalloproteinases activity. 

Material and Methods  

Plant Material 

The Copaiba oleoresin used in this study was obtained from the 
trunk of the Copaifera langsdorffii tree in Tarauacá, Acre, Brazil, 
located at latitude 9°41'0" South and longitude 72°5'0" West, as 
detailed in our previous paper [9].  

Animals 

Following approval by the Institutional Animal Care and Use 
Committee (Protocol 09-10#20), University of Wisconsin-
Milwaukee, 27 male Wistar rats (Rattus norvegicus) weighing 300 
to 340g, were obtained from Charles River Laboratories 
(Wilmington, MA, USA). Rats were fed standard rodent pellet diet 
and water ad libitum  and housed in standard sterilized individual 
polypropylene cages, in a room maintained at 22ĈC, 50% humidity 
and 12 hours light-dark cycle throughout the study. 

Surgical procedure, experimental design and treatment 

Following one week of acclimatization to the animal housing 
facility, rats were anesthetized with inhaled isoflurane. The dorsal 
surface of the upper cervico-thoracic region of each rat was shaved 
and disinfected with 70% isopropyl alcohol before four excisional 
wounds were created with a sterile 8.0 mm skin biopsy punch 
(Acu-Punch®, Acuderm, Fort Lauderdale, FL, USA). Then the 
animals were assigned to three treatment groups: Saline (S), 
Control cream (Cr) or 10% Copaiba cream (C10). Each group 
consisted of 9 rats with a total of 36 wounds (4 wounds/animal). On 
each of days 2, 7 and 14, three rats per group (12 wounds total) 
were used. First, digital photographs were taken for the Wound 
Healing Rate analysis (n=12 wounds), before wounds were 

biopsied. Three biopsies were taken from each rat: one tissue 
sample was used for histological analysis, one for hydroxyproline 
and another for matrix metalloproteinases assays. This resulted in 
three biopsies per analysis per treatment per day of follow-up. 
Wounds were dressed with sterile 2"x 2" gauze (Dynarex Corp., 
Orangeburg, NY, USA), held in place with self-adhesive stretch 
bandage and wrapped with standard athletic tape (Muller Sports 
Medicine, Inc., Prairie du Sac, WI, USA).  
Treatment and dressing changes were done daily, over 14 days. 
The control cream treatment was a standard pharmaceutical base 
cream without the active substance (copaiba), while the 10% 
copaiba cream treatment was the same base cream with 10% 
copaiba, as previously detailed [10]. We used 10% copaiba cream 
because our previous studies showed that this concentration of 
copaiba was suitable for in vivo studies. Moreover, we found 
adverse effects with higher concentrations of copaiba cream or 
pure copaiba oil [9]. 

Wound healing rate 

Wounds were evaluated on days 2, 7 and 14 post-wounding, using 
digital photography. To ensure consistency of wound magnification, 
the camera was placed at a steady distance of 30-cm 
perpendicularly above each wound. A metric scale placed beside 
each wound was photographed with each wound as a reference. 
The visible wound margins were traced on each digital image and 
the areas in mm2 were calculated using an image processing 
analysis software (ImageJ, U.S. National Institutes of Health, 
Bethesda, MD, USA) [7, 12-14]. The following formula was then 
used to compute wound healing rates (WHR):  
WHR = Ao - An / Ao, where: Ao: wound area on day 0; n= day 2, 7 or 
14. 

Histological analysis 

Histological studies were performed on days 2, 7 and 14 post-
wounding. Rats were euthanized with an overdose of isoflurane, 
and then an 8.0 mm skin punch biopsy was obtained from the 
wound area. Wound samples were placed in buffered 
formaldehyde 10% (w/w), pH 7.4 for 24 hours. Following routine 
histological processing, 5øm-thick paraffin sections were stained 
with hematoxylin and eosin (H&E) for qualitative assessment of 
inflammatory infiltrate, angiogenesis and fibroblasts response to 
treatment. Then, sections were photographed at 400x with an 
Olympus® BX41 microscope equipped with an Olympus® DP70 
camera (Olympus America Inc., Melville, NY. USA) [15]. 

Hydroxyproline assay 

Wound biopsies taken on days 2, 7 and 14 post-wounding were 
immediately frozen and stored at -80ĈC until they were used. The 
quantitative analysis of hydroxyproline was performed as detailed 
by Reddy and Enwemeka [16]. Briefly, samples were oven dried 
overnight at 60ĈC until a constant weight was attained. The dried 
samples were transferred to 15 mL plastic tubes and 100 μL of 6N 
HCl per 1.0 mg dry tissue added, and then homogenized for 10 
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seconds before being hydrolyzed in HCl for 4 hours at 130ĈC [14, 
16, 17].  
Following adjustment to neutral pH, 10 μL hydrolizate was added 
to a 96-well microplate. Standard solutions with known 
concentrations of hydroxyproline were prepared: 1.0, 2.0, 4.0, 6.0, 
8.0, 10, 20, 40, 60, 80 and 100 øg/mL, and 10 μL of each standard 
solution was added to the microplate. Then, 90 μL of 0.056M 
Chloramine T was added to each sample before incubation at room 
temperature for 25 minutes.  EhrlichÊs reagent (100 μL 1M) was 
added to the oxidized samples followed by incubation at 60°C for 
20 minutes and chromophore development [14, 16].  
The samples were homogenized at 20 rpm for 10 minutes and the 
absorbance of reddish purple complex measured at 550 nm at 
room temperature using a multi-detection microplate reader 
(SynergyTM HT, Biotek. USA). Absorbance values were plotted 
against the concentrations of standard hydroxyproline, and the 
presence of hydroxyproline in unknown tissue homogenates was 
determined from the standard curve [16]. Tests were done in 
triplicate to foster accuracy of results.  

Detection of matrix metalloproteinases activity 

Sample preparation 

wound biopsies stored at -80°C were thawed, kept in an ice bath 
and weighed. Then, they were sectioned, placed in buffer and 
homogenized at 25,000 rpm twice for 20 seconds each using a 
Polytron PT 1200E tissue homogenizer on ice. The homogenate 
was centrifuged at 4°C for 20 minutes and the supernatant stored 
at -80°C in aliquots of 500 øL until they were used. 

Protein determination 

A protein assay kit based on the Bradford method (Cayman 
Chemical. Ann Harbor, MI, USA) was used to determine protein 
content colorimetrically. The standard curve was determined using 
the following concentrations of bovine serum albumin (BSA): 0.0, 
5.6, 7.5, 10.1, 13.3, 18, 24, 32 and 40 �g/mL. Each sample was 
diluted by a factor of 100 in deionized water and added to the 
microplate wells. Protein determination assay reagent was added 
and the microplates were incubated at room temperature for 5 
minutes. Tests were performed in duplicates, and absorbance 
measured at 595 nm in a microplate reader (SynergyTM HT, Biotek. 
USA).  

Gelatin zymography 
 

from the protein determination, the equivalent volume was 
calculated in order for each sample to contain 20 øg of total 
proteins, to be used for zymography. The equivalent volume (øL) of 
total protein of each sample was mixed with an equal volume of the 
sample buffer (62.5 mM Tris-HCl, 4.0% SDS, 25% glycerol, 0.01% 
bromophenol blue; pH 6.8) prior to loading to the gels [18, 19]. 
Samples were subjected to sodium dodecyl sulphate-
polyacrylamide gel electrophoresis (SDS-PAGE) in 10% SDS-
PAGE gels copolymerized with gelatin (1.0 mg/mL) (BioRad, Cat. 
161-1185, Richmond, CA, USA) under non-reducing conditions 

without prior boiling. Gel loading was design to contain samples 
from the three treatment groups of each of the three periods of 
follow-up. Thus, each gel had samples loaded as: S, Cr and C10-
treated wounds from days 2, 7 and 14 post-wounding. Twenty 
microliters of a molecular weight marker (Novex® Sharp Unstained 
Protein Standard, Invitrogen, Carlsbad, CA, USA) were also loaded 
to each gel. Zymography was performed in triplicate. The 
apparatus was set to run at 100 V, for 90 minutes at 4ĈC. After 
completion of electrophoresis, gels were washed in 2.5% Triton X-
100, rinsed in developing buffer (50mM Tris-HCl, 200 mM NaCl, 5 
mM CaCl2, 0.02% Brij-35 (30%); pH 7.5) and incubated in 
developing buffer at 37°C for 16 hours to allow the MMPs to digest 
the gelatin substrate [19-21]. 
Following incubation, gels were stained (0.5% Coomassie brilliant 
blue R-250, 40% methanol, 10% glacial acetic acid, water) at room 
temperature for 1 hour. Gels were then destained (40% methanol, 
10% glacial acetic acid and 50% water) until the zones of 
proteolysis had cleared. Protease activity was detected as clear 
(unstained) bands against a blue background [22]. Gels were 
washed in deionized water, and incubated in a drying solution 
(30% methanol, 5% glycerol, water) at room temperature for 4 
minutes before they were placed in acrylic molds in between 
cellophane sheets and allowed to dry for 24 hours. 
The dried gels were then scanned and the relative pixel density of 
each band was measured (ImageJ software). Matrix 
metalloproteinases were identified according to the molecular 
weight marker and the enzymatic activity was quantified by the 
intensity of proteolysis bands determined by the area of the peaks 
corresponding to each band [21, 23].  

Statistical analysis 

Wound healing rates, hydroxyproline and matrix 
metalloproteinases data are expressed as mean μ SEM. One-way 
analysis of variance (ANOVA) was used to compare groups using 
SPSS version 18. Bonferroni post hoc tests were then used to pin-
point groups that differed statistically. The level of statistical 
difference was set at p<0.05. 

Results  

Gross macroscopic observations  

Two days post-wounding, wounds treated with control cream or 
10% copaiba cream appeared moist compared to wounds treated 
with saline (Figure 1A). By day 7, saline-treated wounds had firmly 
attached scabs while wounds treated with control cream were 
inflamed and those treated with 10% copaiba cream showed 
important decrease in wound area. By day 14, saline-treated and 
10% copaiba cream-treated wounds had re-epithelialized; those 
treated with 10% copaiba cream had healed fully with firm scar 
tissue. 

Wound healing rate (WHR)  

Two days post-wounding, the WHRs for wounds treated with 
control cream and 10% copaiba cream were lower compared with 
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saline-treated wounds (p=0.006, p=0.002,  respectively) (Figure 
1B). By day 7, WHRs were higher for saline and 10% copaiba 
cream groups compared with control cream-treated wounds, with 

the 10% copaiba cream treated wounds healing significantly faster 
(p=0.005; 10% copaiba cream vs. control cream). Most wounds 
were re-epithelialized by day 14 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Representative images of the wounds and wound healing rates during follow-up. 
(A) Wounds on days 0, 2, 7 and 14 respectively, arranged by treatment: Saline (S) (a-d); Control cream (Cr) (e-h); 10% Copaiba cream (C10) (i-l). (B) 

Effect of topical treatments on wound healing rates (WHR). Results are presented as mean μ SEM (n=12). 
 

Histological analysis 

On day 2, inflammatory infiltrate (leukocytes) were observed in 
each group (Figure 2-Panels a, d and g), while on day 7, each 
group had evidence of fibroblast proliferation, but wounds treated 
with saline (Figure 2-Panel b) and 10% copaiba cream (Figure 2-

Panel h) still had evidence of inflammation. Compared to the saline 
or the control cream group, 10% copaiba cream-treated wounds 
had less fibroblasts and more organized collagen fibers at day 14 
(Figure 2-Panels c, f and i). 
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Matrix metalloproteinases analysis 

As shown in Figure 4 (a representative zymogram gel), gelatin 
zymography revealed clear proteolytic bands with molecular 
weights of 66 kDa, 72 kDa and 92 kDa, suggesting the presence of 
matrix metalloproteinases (MMP) 2 active, pro-MMP-2 and MMP-9, 
respectively 

Figure 4. A representative zymogram gel. 
 Gel shows proteolytic activity of MMPs present in wound biopsies on days 
2, 7 and 14: Saline (S), Control cream (Cr) and 10% Copaiba cream (C10). 

 
Digital quantification of the bands with ImageJ software showed 
increased active MMP-2 activity in wounds treated with saline and 
10% copaiba cream overtime, and a decrease for control cream 
treated wounds between days 7 and 14 (Figure 5A). Active MMP-2 
increased progressively in the saline treated group, reaching 
statistical significance by day 14 (p<0.05) but not by day 7. In the 
cream and 10% copaiba cream treated groups, active MMP-2 was 
significantly high by day 7 (p<0.05; p<0.01), remaining significantly 
high at day 14 in the 10% copaiba treated group but declining 
slightly in the cream control group. Compared to day 2, active 
MMP-2 rose 93.2% by day 7 and remained virtually at the same 
level (93.4%) by 14 in the copaiba treated group. The rise for the 
saline group was 58.7% by day 7 and 78.1% by day 14; while that 
of wounds treated with cream were 70.1% and 57.8%, respectively. 
In contrast, pro-MMP-2 activity remained at a constant level in each 
group (Figure 5B), except for moderate statistically insignificant 
increases in the cream treated group between days 2 and 7, and in 
the 10% copaiba treated group between days 7 and 14.   
MMP-9 activity decreased progressively in the saline treated group, 
reaching statistical significance by day 14 (p<0.001) (Figure 5C). 
Similarly, control cream treatment resulted in a progressive 
decrease of MMP-9, reaching statistical significance by day 7 
(p<0.05) with further decline by day 14 (p<0.01). Treatment with 
10% copaiba cream significantly reduced MMP-9 between days 2 
and 14 (p<0.05) and also between days 7 and 14 (p<0.05). MMP-9 
activity was undetectable for this group on day 14. 
 
 
 
 
 

Figure 5. Profiles of matrix metalloproteinases activities. 
(A) active MMP-2, (B) pro-MMP-2, (C) MMP-9, on days 2, 7 and 14: Saline 
(S), Control cream (Cr) and 10% Copaiba cream (C10). Results are 
presented as mean μ SEM of band intensity from the zymograms (n=3). 
Statistical differences: (*) p<0.001; (**) p<0.01 and (***) p<0.05. 

Discussion 

Copaiba oleoresin has been popularly used as an alternative for 
wound healing for centuries by BrazilÊs native Amazonians because 
of the perception that it has tissue repair properties; but few studies 
have investigated this traditional belief [24]. Our study shows that 
treatment with 10% copaiba cream enhances wound healing by 
stimulating collagen synthesis, promoting tissue remodeling, 
regulating matrix metalloproteinases-2 and -9 activities and 
improving reepithelialization. 
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Histological examination of the wounds revealed early population of 
all wounds by inflammatory cells. By day 7, these cells had been 
replaced by fibroblasts, but saline and copaiba treated wounds 
continued to show evidence of inflammation. Copaiba treated 
wounds synthesized collagen rapidly, and quicker than the other 
two groups, as evidenced by higher amounts of hydroxyproline at 
days 7 and 14. Our results also show that wound healing rate was 
similarly faster following copaiba treatment. This is not just 
consistent with the observation that a higher concentration of 
hydroxyproline correlates with a faster rate of wound healing [7, 
17], but correlates very well with our histological observations and 
matrix metalloproteinase-2 activity.  
The presence of mature and organized collagen fibers, observed in 
our histological analysis of samples from wounds treated with 10% 
copaiba cream, along with the increase in hydroxyproline, suggests 
that copaiba oleoresin promotes fibroblast proliferation and 
extracellular matrix synthesis during wound healing.  
Our zymographic analysis showed a modulation of 
metalloproteinases 2 and 9 activity in the samples. MMP-2, a 
marker of cellular activity of conjunctive tissue is normally present 
in the skin, in basal levels, while MMP-9, a marker for assessing 
the inflammatory phase of wound healing, is expressed mainly by 
neutrophils and macrophages, and is related to the inflammation 
following tissue damage [20, 25].  
Pro-MMP-2 activity show moderate increases in the cream treated 
group between days 2 and 7, and in the 10% copaiba treated group 
between days 7 and 14. In contrast, active MMP-2 increased 
progressively in 10% copaiba cream-treated wounds. These 
findings are in accordance with the hypothesis that MMP-2 has an 
important role in the remodeling phase and also on the 
homeostasis of collagen. Moreover, they are consistent with our 
histological findings, as well as our quantification of collagen 
synthesis in each group. During the last phases of repair there is an 
increase of pro-MMP-2 and persistence of MMP-2 [18, 26-28]. The 
progressive increase in the activity of pro- MMP-2 and persistence 
of active-MMP-2 observed from days 7 to 14 in wounds treated with 
10% copaiba cream correlates very well with the increase in 
collagen synthesis observed in this group; indicating that copaiba 
promotes healing. 
MMP-9 activity was not detectable by day 14 in copaiba treated 
wounds, and this suggests that treatment with copaiba accelerated 
inflammatory response to injury compared to saline or cream 
treatment. Furthermore, the low levels of MMP-9 activity in copaiba 
treated wounds at days 2 and 7 provide further evidence that 
inflammatory response to injury was moderate and seemed 
modulated given the consistently lower levels of MMP-9 in copaiba 
treated wounds relative to the other two groups.  
Wounds treated with saline and control cream continued to show 
MMP-9 activity on day 14; more so in the cream treated group. 
Lingering inflammation is associated with continuing TNF-đ and 
subsequently MMP-9 activities [29]. This prevents migrating 
keratinocytes from forming new attachments to a newly 
synthesized basement membrane. And as our histological findings 
and data on WHR and hydroxyproline analysis indicate, saline 

treated and cream treated wounds healed at a different rate and 
synthesized less collagen than copaiba treated wounds.  
The biologically active mediators of wound healing in copaiba are 
not clearly understood. However, high resolution gas 
chromatography-mass spectrometry (HRGC-MS) of the oleoresin 
used in this study showed a mixture of sesquiterpenes (75%) and 
diterpenes (25%) [30]. The main compounds among 
sesquiterpenes were shown to be �-caryophyllene (51%), followed 
by đ-humulene (8.52%). Among diterpenes, the main compounds 
were 11-acetoxy-copalic acid (5.23%), 11-hydroxy-copalic acid 
(4.8%), copalic acid (4.69%) and agatic acid (3.32%) [30]. Studies 
on medicinal plants have shown that phytochemical constituents 
like flavonoids, triterpenoids and tannins promote wound healing 
[14, 31]. Moreover, it has been suggested that the biological 
activities of copaiba oleoresin may be ascribed to the complex 
mixture of sesquiterpenes and diterpenes [32]. Terpenoids could 
promote wound healing because of their astringent and 
antimicrobial properties, which appear to be responsible for wound 
contraction and an increased rate of epithelialization [33]. The 
wound healing activity may be attributed to their individual activities 
or the synergistic effect of bioactive molecules [26].  

Conclusion 

Our findings suggest that 10% copaiba cream promotes wound 
healing by modulating and moderating inflammation, stimulating 
fibroblast proliferation, advancing collagen synthesis, and 
modulating MMP-2 and MMP-9 activities. This is evidenced by 
early appearance of a larger amount of inflammatory mediator 
cells, their rapid replacement by fibroblasts, synthesis of higher 
amounts of hydroxyproline, differences in the levels of MMPs at 
various stages, and the higher wound healing rate of copaiba 
treated wounds compared to cream or saline treated control 
wounds.  
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