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Abstract

Mitochondrian play an important role in the production of energy and cell cycle regulation.
Administration of azathioprine (AZA), an immunosuppressant drug, adversely affects the hepatic
mitochondria which may culminate hepatotoxicity. The present study was undertaken to evaluate
the effect of quercetin (QE), against AZA induced hepatic injury in Wistar rats. AZA (50 mg/kg body
weight, i.p.) was administered once on the 7th day of experiment. A significant depletion in the levels
of manganese superoxide dismutase (MnSOD), glutathione peroxidase (GPx) and reduced
glutathione (GSH) were observed in AZA alone treated rats. Simultaneous decrease in the levels of
tricarboxylic acid (TCA) enzymes such as isocitrate dehydrogenase (ICDH), -ketoglutarate
dehydrogenase (-KGDH ), succinate dehydrogenase (SDH) and malate dehydrogenase (MDH)
were observed. Decrease in the levels of these enzymes suggests a loss in mitochondrial function
and integrity. Lipids existing in the mitochondrial membrane were peroxidised, and measured by the
production of malondialdehyde (MDA). The supplementation of QE (50mg/kg body weight) restored
the depleted levels of enzymes and above hepatic mitochondrial abnormality to near normalcy. The
present study highlights the antioxidant property of QE in improving the mitochondrial functions in
AZA induced hepatic degradation..
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Introduction
AZA was purchased from Sigma Aldrich Chemical Company,

Liver is the organ of body which performs the detoxification of all
substances which are ingested by humans; therefore hepatic cells
are most susceptible to damage by metabolites of various
allopathic drugs. These drugs cause significant hepatic damage
due to formation of highly toxic metabolites. Azathioprine, one of
the clinical agents employed in the organ transplantations [1].and
autoimmune diseases [2].

is a potent hepatotoxicant. Mitochondrian is responsible for
various functions ATP production, cell cycle regulation, growth and
death. Ironically mitochondria become the ultimate targets of free
radicals which are generated during the transfer of electrons within
enzyme complexes via its own electron transport chain [3].
Therefore in concordance with the previous established theory [4]
quercetin was chosen as a novel remedy for ameliorating hepatic
mitochondrial damage caused by generation of free radicals due to
azathioprine intoxication.

Materials and Methods

Drugs and chemicals

(ec) T

Bangalore, India and QE was obtained from Hi-Media Lab, Nasik,
India. All the other chemicals used were of analytical grade.

Experimental Protocol
Animals

The study was performed on male albino rats of Wistar strain
(average weight 150-180 g), which were obtained from
Experimental Animal Care Centre, Vel“s College of Pharmacy,
Chennai, India. The experimental protocol was approved by
Institutional Animal Ethical Committee (IAEC) of Committee for the
Purpose of Control and Supervision of Experiments on Animals
(CPCSEA), Government of India, Ministry of Welfare, Chennai. The
animals were housed under 25 + 20C and acclimatized to 12 + 1 hr
day and night rhythm during the experimental period. They were
provided with food supplied by Hindustan Lever Ltd., Mumbai, India
under the trade name Gold Mohur rat feed and water ad libitum.
Prior to experimentation the animals were deprived of food for 24
hr but allowed free access to water throughout the experiment.
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Experiments was conducted under the strict guidelines laid by the
committee.

The experimental animals were randomized into four groups of six
rats each as follows:

Group I: Control rats received normal saline (2ml/kg body weight)
for 7 days.

Group II: A single intraperitoneal injection of AZA (50 mg/kg body
weight, suspended in saline) was administered to rats on the 7th
day.

Group lII: Intraperitoneal injection of QE (50 mg/kg body weight,
suspended in saline) was given to rats for 7 days.

Group IV: QE (50 mg/kg body weight, suspended in saline) was
administered to rats as in Group IlI, on the 7th day of experimental
period 1hr after administration of QE, single dose of AZA (50 mg/kg
body weight, suspended in saline) was given intraperitoneal as in
Group IL[5]. After the 7 days of experimental period (i.e., on the 8th
day), the animals were anesthetized and decapitated. The liver
tissues were immediately excised and rinsed in ice- cold
physiological saline. The tissues were homogenized in 0.01 M Tris-
HCL buffer (pH 7.4) and aliquots of this homogenate were used for
the assays. Blood was collected immediately and the serum was
separated by centrifugation. The liver homogenate was centrifuged
and mitochondria were isolated. Homogenate and serum were
used for several biochemical estimations.

Isolation of liver mitochondria

The mitochondria of liver were isolated by the method of[6]. 10%
(w/v) homogenate was prepared in 0.05 M Tris-HCI buffer
containing 0.25 M sucrose and centrifuged at 600 x g for 10
minutes. The supernatant fraction was decanted and centrifuged at
15,000 x g for 5 minutes. The resultant mitochondrial pellet was
then washed and resuspended in the same buffer.

Determination of mitochondrial antioxidant enzymes

The mitochondrial superoxide dismutase activity was assayed by
the method of [7]. The mitochondrial glutathione peroxidase activity
was assayed by the method of Ro[8]. The reduced glutathione in
liver mitochondria was determined according to the method off9].

Determination of mitochondrial lipid peroxides

The liver mitochondrial lipid peroxide content was determined by
the thiobarbituric acid (TBA) reaction described by[10].

Determination of TCA cycle enzymes

The activity of isocitrate dehydrogenase was assayed by the
method of[11]. The activity of -ketoglutarate dehydrogenase was
assayed by the method of [12]. The activity of succinate
dehydrogenase was assayed according to the method of{13]. in
which the rate of reduction of potassium ferricyanide was
measured by decreased in optical density at 400nm, in the
presence of adequate amount of potassium cyanide to inhibit

cytochrome C oxidase. The activity of malate dehydrogenase was
assayed by the method of [14]. The substrate used was
oxaloacetate and

determination of enzyme activity was carried out by measuring the
rate of oxidation of NADH.

Statistical analysis

All the grouped data were statistically evaluated with Statistical
Package for Social Sciences (SPSS), Version 7.5. Hypothesis
testing methods included one way analysis of variance (ANOVA)
followed by least significant difference (LSD) test. A , P’ value of
less than 0.05 was considered to indicate statistical significance.
All the results were expressed as mean + S.D. for six animals in
each group.

Results

The activities of MnSOD and GPx were significantly (p < 0.05)
lower in AZA induced rats (Group Il) as compared to that of control
rats (group I). On the 7th day QE administration (group IV)
significantly reversed all the AZA induced mitochondrial alterations.
The rats receiving QE alone (group 1), did not show any significant
change when compared with control rats indicating that it does not
produce oxidative stress up to the concentration tested (Table 1).

Table 1: Effect of Cyclophosphamide and Hesperidin on the
activities of cardiac marker enzymes in serum.

CPK ALT LDH AST

Groups TuLh TuLh @vLh | auLh
Group I 125.46 50.95 274.73 83.04
(Control) +2.54 +0.74 +1.44 +2.16
Group II 290.89 185.74 453.26 275.35
(CP) +7.57% *11.44%" | £48.31% | £18.75%
Group III 125.71 53.59 280.40 85.05
(HDN) *2.66™ +1.72™ +7.50N | +2.98N
Group IV 136.76 59.15 299.75 101.78

(HDN+CP) | +10.84*" | +2.66*" +14.14*° | +6.83*°

Results are expressed as mean +S.D. for 6 rats. Comparisons are made between:
a.group | and group II; P-group Il and group IV. *Statistically significant (p < 0.05); NS
- non significant.

The level of hepatic mitochondrial enzymes were significantly
depleted in AZA induced rats (group II), when compared to control
(group ). These enzyme levels were reversed in QE pretreatment
(group 1V), which demonstrate amelioration in levels when
compared to the AZA induced rats (group Il). The rats receiving QE
alone (group ), did not exibhit any significant change
comparatively control rats (group 1) (Table 2). The MDA level was
significantly (p < 0.05) ameliorated in liver mitochondria of AZA
induced rats (group Il). The MDA level was found to be lowered by
the QE pretreatment (Graph 1) on 7th day (group IV). The QE
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alone (group I1l) did not show any significant change when (Graph
1). The level of mitochondrial GSH was significantly reduced in
AZA treated rats (group Il).

Table 2: Effect of Cyclophosphamide and Hesperidin on the
activities of cardiac marker enzymes in tissue.

CPK ALT LDH AST
Groups (IU mg! (IUmg? | (U mg! | (IUmg!

protein) protein) | protein) protein)
Group | 22.59 6.16 33.88 7.00
(Control) +1.48 +0.22 +1.50 +0.44
Group Il 7.43 2.68 14.52 3.32
(CP) +0.45* +0.10* +1.08*@ +0.15*@
Group Il 23.30 6.16 34.71 7.19
(HDN) +1.53N8 +0.35NS | 50.95NS | 40.87NS
Group IV 17.92 4.61 28.94 713
(HDN+CP) +0.276* 010" | +1.83* +0.56*

Results are expressed as mean +S.D. for 6 rats. Comparisons are made between:
a-group | and group II; b-group Il and group IV. *Statistically significant (p < 0.05);
NS - non significant.
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Figure 1:  Levels of MDA in the heart of experimental animals.

Results are given as mean +S.D. For 6 rats. Comparisons are made between: &-
group | and group II; ®-group Il and group IV. *Statistically significant (p < 0.05); NS

- non significant.

The mitochondrial GSH level was normalized by QE on the
(group IV). The rats receiving QE alone did not show any
significant change (group I1l) when compared to control rats (group
l),indicating that it does not produce any harmful effects (Graph 2).
Therefore through the above enzyme estimations, it was proved
that quercetin is efficient in protecting hepatic mitochondria
degradation induced by AZA administration.

Discussion

There is a substantial evidence to prove that quercetin protects
azathioprine induced hepatic cellular damage [5]. Therefore, we
examined the protective effect of quercetin against azathioprine
induced deterioration at the subcellular level. The mitochondrial
electron transport chain comprising of several enzyme complexes
is responsible for production of ATP which is utilized by the cell
[15]. Evidence of data revealed that free radicals generated during
the electron transfer in the respiratory complexes may lead to
deposition of these radicals in mitochondria that might impinge on
its physiology [16]. The homeostasis of reactive oxygen species in
the mitochondria is regulated by GSH [17]. GSH is a tripeptide
[18].which counteracts against oxidative stress in the mitochondria
by quenching free radicals [19]. The attenuation in the antioxidant
system in mitochondrial matrix as a consequence of hampered
GSH levels has been shown to enhance oxidative damage to the
electron transport chain (ETC). This severe effect on ETC indirectly
inhibits GSH synthesis there by exacerbating the effect of
mitochondrial oxidative free radicals ultimately leading to hepatic
damage [20,21]. Culminating evidences proved that during
azathioprine disposition, GSH is consumed as a co substrate, so
that it leads to depleted levels in mitochondria [22]. It was observed
in our study that on treatment with azathioprine, mitochondrial GSH
was reduced, also our results depicted an increment in the GSH
levels after quercetin administration that may be due to fact that it
affects GSH/GSSG ratio in hepatic mitochondria. These free
radical species initiate the oxidation of mitochondrial
polyunsaturated fatty acids (PUFA), protein, and sterol as revealed
by mounting literatures [23]. The formation of conjugated dienes by
the PUFA through oxidative radicals may propagate synthesis of
lipid peroxides that cause impairment in the integrity and function
of hepatic mitochondrial membrane [24]. We observed an alteration
in mitochondrial MDA levels in azathioprine intoxicated rats, which
is in sync with the previous literatures indicating increased lipid
peroxidation that could be attributed to deterioration of antioxidant
defense mechanism [25]. The quercetin treatment in our study
exhibited near normalcy in MDA levels by quenching peroxide
radicals thereby proving its efficacy in maintaining membrane
integrity. Mitochondrial endogenous radical load is diminished by
enzymatic scavengers like Mn- SOD and GPx [5]. Superoxide
radical is formed directly by accepting electron from the molecular
oxygen, its accumulation leads to inhibition of ETC [15]. This
superoxide is dismutated into H,O, by the MnSOD [26]. GPx
converts H,O5 in to HyO [25]. in mitochondria. Activities of Mn-
SOD depict hampered levels after induction with azathioprine as
documented by previous reports. The hampered levels of GPx in
AZA intoxicated rats may be due to the unavailability of the thiol
substrate [27]. Pre-treatment with the quercetin significantly
restored the mitochcndrial levels of Mn-SOD and GPx to near
normal levels [28,5].

Due to the degradation of mitochondrial membrane via free
radicals, aldehydic products are formed which inhibit the activity of
-KGDH enzyme as corroborated earlier [29]. Hydrogen peroxide
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attacks the enzyme; leading to its diminished activity thereby

stopping the formation of NADH which consequently does not KGDH.

participates in ETC, resulting in depleted ATP levels [30]. ICDH
controls he redox balance in mitochondria. It restores NADPH
which is adept in regenerating GSH. Due to the free radical attack,
electron transfer gets hampered leading to its loss in activity
[31,32]. Activity of SDH and MDH get lost due to thiolation of
cysteine residues [33,34]. We observed a significant decrease in
the levels of mitochondrial enzymes such as ICDH, SDH, MDH and

-KGDH in AZA intoxicated rats which were in concordance with
previous studies [5]. In our experiment quercetin protected rats
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